Главная страница
Навигация по странице:

  • Стандарт 10Base-2

  • Стандарт 10Base-T

  • Стандарт 10Base-F

  • Правило 4-х повторителей

  • Формат кадра Ethernet

  • 5.6. ЛВС стандарта Token Ring

  • телекоммуникации. 1. элементы теории передачи информации информация, сообщение, сигнал Понятие информация


    Скачать 1.36 Mb.
    Название1. элементы теории передачи информации информация, сообщение, сигнал Понятие информация
    Дата29.03.2019
    Размер1.36 Mb.
    Формат файлаdoc
    Имя файлателекоммуникации.doc
    ТипДокументы
    #71939
    страница7 из 10
    1   2   3   4   5   6   7   8   9   10

    5.5.1. Стандарты технологии Ethernet
    Стандарт 10Base-5

    Стандарт 10Base-5 соответствует экспериментальной сети Ethernet фирмы Xerox и может считаться классическим Ethernet'ом. Он использует в качестве среды передачи данных коаксиальный кабель с диаметром центрального медного провода 2,17 мм и внешним диаметром около 10 мм ("толстый" Ethernet).

    Кабель используется как моноканал для всех станций. Сегмент кабеля имеет максимальную длину 500 м (без повторителей) и должен иметь на концах согласующие терминаторы сопротивлением 50 Ом, поглощающие распространяющиеся по кабелю сигналы и препятствующие возникновению отраженных сигналов.

    Различные компоненты сети, выполненной на толстом коаксиале, показаны на рисунке 5.11.

    Станция должна подключаться к кабелю при помощи приемопередатчика - трансивера. Трансивер устанавливается непосредственно на кабеле и питается от сетевого адаптера компьютера

    Трансивер соединяется с сетевым адаптером интерфейсным кабелем AUI (Attachment Unit Interface) длиной до 50 м, состоящим из 4 витых пар (адаптер должен иметь разъем AUI). Допускается подключение к одному сегменту не более 100 трансиверов, причем расстояние между подключениями трансиверов не должно быть меньше 2.5 м.

    Р
    исунок 5.11. Компоненты физического уровня сети стандарта
    10 Base-5, состоящей из двух сегментов

    Трансивер - это часть сетевого адаптера, которая выполняет следующие функции:

    • прием и передача данных с кабеля на кабель,

    • определение коллизий на кабеле,

    • электрическая развязка между кабелем и остальной частью адаптера,

    • защита кабеля от некорректной работы адаптера.

    Последнюю функцию часто называют контролем болтливости (jabber control). При возникновении неисправностей в адаптере может возникнуть ситуация, когда на кабель будет непрерывно выдаваться последовательность случайных сигналов. Так как кабель - это общая среда для всех станций, то работа сети будет заблокирована одним неисправным адаптером. Чтобы этого не случилось, на выходе передатчика ставится схема, которая проверяет количество битов, переданных в пакете. Если максимальная длина пакета превышается, то эта схема просто отсоединяет выход передатчика от кабеля.

    Упрощенная структурная схема трансивера показана на рисунке 5.12. Детектор коллизий определяет наличие коллизии в коаксиальном кабеле по повышенному уровню постоянной составляющей сигналов. Если постоянная составляющая превышает определенный порог, то значит на кабель работает более чем один передатчик.

    К достоинствам стандарта 10Base-5 относятся:

    • хорошая защищенность кабеля от внешних воздействий,

    • сравнительно большое расстояние между узлами,

    • возможность простого перемещения рабочей станции в пределах длины кабеля AUI.

    К недостаткам следует отнести:

    • высокую стоимость кабеля,

    • сложность его прокладки из-за большой жесткости,

    • наличие специального инструмента для заделки кабеля,

    • при повреждении кабеля или плохом соединении происходит останов работы всей сети,

    • необходимо заранее предусмотреть подводку кабеля ко всем возможным местам установки компьютеров.


    Р
    исунок 5.12. Структурная схема трансивера
    Стандарт 10Base-2

    Стандарт 10Base-2 использует в качестве передающей среды коаксиальный кабель с диаметром центрального медного провода 0,89 мм и внешним диаметром около 5 мм ("тонкий" Ethernet, волновое сопротивление кабеля 50 Ом). Максимальная длина сегмента без повторителей составляет 185 м, сегмент должен иметь на концах согласующие терминаторы 50 Ом.

    Станции подключаются к кабелю с помощью T-коннектора, который представляет из себя тройник, один отвод которого соединяется с сетевым адаптером, а два других - с двумя концами разрыва кабеля. Максимальное количество станций, подключаемых к одному сегменту, 30. Минимальное расстояние между станциями - 1 м.

    Этот стандарт очень близок к стандарту 10Base-5. Но трансиверы в нем объединены с сетевыми адаптерами за счет того, что более гибкий тонкий коаксиальный кабель может быть подведен непосредственно к выходному разъему платы сетевого адаптера, установленной в шасси компьютера. Кабель в данном случае "висит" на сетевом адаптере, что затрудняет физическое перемещение компьютеров.

    Топология сегмента сети стандарта 10Base-2 показана на рисунке 5.13.



    Рисунок 5.13. Сеть стандарта 10Base-2

    Реализация этого стандарта на практике приводит к наиболее простому решению для кабельной сети, так как для соединения компьютеров требуются только сетевые адаптеры и Т-коннекторы. Однако этот вид кабельных соединений наиболее сильно подвержен авариям и сбоям: кабель восприимчив к помехам, в моноканале имеется большое количество механических соединений (каждый T-коннектор дает три механических соединения, два из которых имеют жизненно важное значение для всей сети), пользователи имеют доступ к разъемам и могут нарушить целостность моноканала. Кроме того, эстетика и эргономичность этого решения оставляют желать лучшего, так как от каждой станции через T-коннектор отходят два довольно заметных провода, которые под столом часто образуют моток кабеля - запас, необходимый на случай даже небольшого перемещения рабочего места.

    Общим недостатком стандартов 10Base-5 и 10Base-2 является отсутствие оперативной информации о состоянии моноканала. Повреждение кабеля обнаруживается сразу же (сеть престает работать), но для поиска отказавшего отрезка кабеля необходим специальный прибор - кабельный тестер.
    Стандарт 10Base-T

    Стандарт принят в 1991 году как дополнение к существующему набору стандартов Ethernet и имеет обозначение 802.3i. Данный стандарт предусматривает использование в качестве среды двойной неэкранированной витой пары (Unshielded Twisted Pair, UTP). Соединения станций осуществляются по топологии "точка - точка" со специальным устройством - многопортовым повторителем с помощью двух витых пар. Одна витая пара используется для передачи данных от станции к повторителю (выход Tx сетевого адаптера), а другая - для передачи данных от повторителя станции (вход Rx сетевого адаптера). На рисунке 5.14 показан пример трехпортового повторителя.

    Многопортовые повторители в данном случае обычно называются концентраторами (англоязычные термины - hub или concentrator). Концентратор осуществляет функции повторителя сигналов на всех отрезках витых пар, подключенных к его портам, так что образуется единая среда передачи данных - моноканал (шина). Повторитель обнаруживает коллизию в сегменте в случае одновременной передачи сигналов по нескольким своим Rx входам и посылает jam-последовательность на все свои Tx выходы. Стандарт определяет битовую скорость передачи данных 10 Мб/с и максимальное расстояние отрезка витой пары между двумя непосредственно связанными узлами (станциями и концентраторами) не более 100 м при использовании витой пары качества не ниже категории 3.





    Рисунок 5.14. Сеть 10Base-T - один домен коллизий
    Tx - передатчик, Rx – приемник
    Возможно иерархическое соединение концентраторов в дерево. Для обеспечения синхронизации станций при реализации процедур доступа CSMA/CD и надежного распознавания станциями коллизий в стандарте определено максимально число концентраторов между любыми двумя станциями сети. Общее количество станций в сети 10Base-T не должно превышать 1024.

    Сети, построенные на основе стандарта 10Base-T, обладают по сравнению с коаксиальными вариантами Ethernet'а многими преимуществами. Эти преимущества связаны с разделением общего физического кабеля на отдельные кабельные отрезки, подключенные к центральному коммуникационному устройству. И хотя логически эти отрезки по-прежнему образуют общий домен коллизий, их физическое разделение позволяет контролировать их состояние и отключать в случае обрыва, короткого замыкания или неисправности сетевого адаптера на индивидуальной основе. Это обстоятельство существенно облегчает эксплуатацию больших сетей Ethernet, так как концентратор обычно автоматически выполняет такие функции, уведомляя при этом администратора сети о возникшей проблеме.

    Стандарт 10Base-F

    Стандарт 10Base-F использует в качестве среды передачи данных оптоволокно. Функционально сеть стандарта 10Base-F состоит из тех же элементов, что и сеть стандарта 10Base-T - сетевых адаптеров, многопортового повторителя и отрезков кабеля, соединяющих адаптер с портом повторителя. Как и при использовании витой пары, для соединения адаптера с повторителем используется два оптоволокна - одно соединяет выход Tx адаптера со входом Rx повторителя, а другое - вход Rx адаптера с выходом Tx повторителя.

    Стандарт FOIRL (Fiber Optic Inter-Repeater Link) - это первый стандарт комитета 802.3 для использования оптоволокна в сетях Ethernet. Он гарантирует длину оптоволоконной связи между повторителями до 1 км при общей длине сети не более 2500 м. Максимальное число повторителей - 4.

    Стандарт 10Base-FL предназначен для соединения конечных узлов с концентратором и работает с сегментами оптоволокна длиной не более 2000 м при общей длине сети не более 2500 м. Максимальное число повторителей - 4.

    Стандарт 10Base-FB предназначен для магистрального соединения повторителей. Он позволяет иметь в сети до 5 повторителей при максимальной длине одного сегмента 2000 м и максимальной длине сети 2740 м. Повторители, соединенные по стандарту 10Base-FB постоянно обмениваются специальными последовательностями сигналов, отличающимися от сигналов кадров данных, для обнаружения отказов своих портов. Поэтому, концентраторы стандарта 10Base-FB могут поддерживать резервные связи, переходя на резервный порт при обнаружении отказа основного с помощью тестовых специальных сигналов. Концентраторы этого стандарта передают как данные, так и сигналы простоя линии синхронно, поэтому биты синхронизации кадра не нужны и не передаются. Стандарт 10Base-FB поэтому называют также синхронный Ethernet.

    Стандарты 10Base-FL и 10Base-FB не совместимы между собой.
    Правило 4-х повторителей
    При описании топологии сети стандарта 10Base-5 приводились ограничения на длину одного непрерывного отрезка коаксиального кабеля, используемого в качестве общей шины передачи данных для всех станций сети. Отрезок кабеля, завершающийся на обоих концах терминаторами и имеющий общую длину не более 500 м называется физическим сегментом сети. Однако при расчете окна коллизий общая максимальная длина сети 10Base-5 считалась равной 2500 м. Противоречия здесь нет, так как стандарт 10Base-5 (впрочем как и остальные стандарты физического уровня Ethernet) допускает соединение нескольких сегментов коаксиального кабеля с помощью повторителей, которые обеспечивают увеличение общей длины сети.

    Повторитель соединяет два сегмента коаксиального кабеля и выполняет функции регенерации электрической формы сигналов и их синхронизации (retiming). Повторитель прозрачен для станций, он обязан передавать кадры без искажений, модификации, потери или дублирования. Имеются ограничения на максимально допустимые величины дополнительных задержек распространения битов нормального кадра через повторитель, а также битов jam-последовательности, которую повторитель обязан передать на все подключенные к нему сегменты при обнаружении коллизии на одном из них. Воспроизведение коллизии на всех подключенных к повторителю сегментах - одна из его основных функций. Говорят, что сегменты, соединенные повторителями, образуют один домен коллизий (collision domain).

    Повторитель состоит из трансиверов, подключаемых к коаксиальным сегментам, а также блока повторения, выполняющего основные функции повторителя.

    На рисунке 5.11 показан пример сети, состоящей из двух сегментов, соединенных одним повторителем.

    В общем случае стандарт 10Base-5 допускает использование до 4-х повторителей, соединяющих в этом случае 5 сегментов длиной до 500 метров каждый, если используемые повторители удовлетворяют ограничениям на допустимые величины задержек сигналов. При этом общая длина сети будет составлять 2500 м, и такая конфигурация гарантирует правильное обнаружение коллизии крайними станциями сети. Только 3 сегмента из 5 могут быть нагруженными, то есть сегментами с подключенными к ним трансиверами конечных станций.

    Правила 4-х повторителей и максимальной длины каждого из сегментов легко использовать на практике для определения корректности конфигурации сети. Однако эти правила применимы только тогда, когда все соединяемые сегменты представляют собой одну физическую среду, то есть в нашем случае толстый коаксиальный кабель, а все повторители также удовлетворяют требованиям физического стандарта 10Base-5. Аналогичные простые правила существуют и для сетей, все сегменты которых удовлетворяют требованиям другого физического стандарта, например, 10Base-T или 10Base-F. Однако для смешанных случаев, когда в одной сети Ethernet присутствуют сегменты различных физических стандартов, правила, основанные только на количестве повторителей и максимальных длинных сегментов становятся более запутанными. Поэтому более надежно рассчитывать время полного оборота сигнала по смешанной сети с учетом задержек в каждом типе сегментов и в каждом типе повторителей и сравнивать его с максимально допустимым временем, которое для любых сетей Ethernet с битовой скоростью 10 Мб/с не должно превышать 575 битовых интервалов (количество битовых интервалов в пакете минимальной длины с учетом преамбулы).
    Формат кадра Ethernet

    Форматы нескольких вариантов технологии Ethernet показаны на рис. 5.15.



    Рисунок 5.15 Формат кадра Ethernet

    Поля имеют следующие назначения:

    • Преамбула: 7 байт, каждый из которых представляет чередование единиц и нулей 10101010. Преамбула позволяет установить битовую (тактовую) синхронизацию на приемной стороне.

    • Ограничитель начала кадра (SFD, start frame delimiter): 1 байт, последовательность 10101011, указывает, что далее последуют информационные поля кадра. Этот байт можно отности к преамбуле.

    • Адрес назначения (DA, destination address): 6 байт, указывает адрес станции, для которой (которых) предназначен этот кадр. Это может быть единственный физический адрес (unicast), групповой адрес (multicast) или широковещательный адрес (broadcast).

    • Адрес отправителя (SA, source address): 6 байт, указывает адрес станции, которая посылает кадр.

    • Поле типа или длины кадра (T or L, type or length): 2 байта. Существуют два базовых формата кадра Ethernet (в английской терминологии raw formats - сырые форматы) - Ethernet_II и IEEE 802.3 (рис.5.15), причем различное назначение у них имеет именно рассматриваемое поле. Для кадра Ethernet_II в этом поле содержится информация о типе кадра. Для кадра IEEE 802.3 в этом поле содержится выраженный в байтах размер следующего поля - поля данных (LLC Data). Если эта цифра приводит к общей длине кадра меньше 64 байт, то за полем LLC Data добавляется поле Pad (заполнение). Для протокола более высокого уровня не возникает путаницы с определением типа кадра, так как для кадра IEEE 802.3 значение этого поля не может быть больше 1500 (0x05DC). По этому, в одной сети могут свободно сосуществовать оба формата кадров, более того один сетевой адаптер может взаимодействовать с обоими типами посредством стека протоколов.

    • Данные (LLC Data): поле данных.

    Дополнительное поле (Рad) - заполняется только в том случае, когда поле данных невелико, с целью увеличения размера поля данных до 46 байт. Ограничение снизу на минимальную длину кадра необходимо для правильного разрешения коллизий.

    • Контрольная последовательность кадра (FCS, frame check sequence): 4-х байтовое поле, в котором указывается контрольная сумма, вычисленная с использованием циклического избыточного кода по полям кадра за исключением преамбулы, SDF и FCS.


    5.6. ЛВС стандарта Token Ring
    Сети стандарта Token Ring, также как и сети Ethernet, используют разделяемую среду передачи данных, которая состоит из отрезков кабеля, соединяющих все станции сети в кольцо. Кольцо рассматривается как общий разделяемый ресурс, и для доступа к нему используется не случайный алгоритм, как в сетях Ethernet, а детерминированный, основанный на передаче станциями права на использование кольца в определенном порядке. Право на использование кольца передается с помощью кадра специального формата, называемого маркером (token).

    Стандарт Token Ring был принят комитетом 802.5 в 1985 году. В это же время компания IBM приняла стандарт Token Ring в качестве своей основной сетевой технологии. В настоящее время именно компания IBM является основным законодателем моды технологии Token Ring, производя около 60% сетевых адаптеров этой технологии.

    Сети Token Ring работают с двумя значениями скоростями - 4 Мб/с и 16 Мб/с. Первая скорость определена в стандарте 802.5, а вторая является новым стандартом де-факто, появившимся в результате развития технологии Token Ring. Смешение станций, работающих на различных скоростях, в одном кольце не допускается.

    Сети Token Ring, работающие со скоростью 16 Мб/с, имеют и некоторые усовершенствования в алгоритме доступа по сравнению со стандартом 4 Мб/с.
    Маркерный метод доступа к среде передачи данных

    В сетях с маркерным методом доступа право на доступ к среде передается циклически от станции к станции по логическому кольцу. Кольцо образуется отрезками кабеля, соединяющими соседние станции. Таким образом, каждая станция связана со своей предшествующей и последующей станцией и может непосредственно обмениваться данными только с ними. Для обеспечения доступа станций к физической среде по кольцу циркулирует кадр специального формата и назначения - маркер (англ.- Token).

    Получив маркер, станция анализирует его, при необходимости модифицирует и при отсутствии у нее данных для передачи обеспечивает его продвижение к следующей станции. Станция, которая имеет данные для передачи, при получении маркера изымает его из кольца, что дает ей право доступа к физической среде и передачи своих данных. Затем эта станция выдает в кольцо кадр данных установленного формата последовательно по битам. Переданные данные проходят по кольцу всегда в одном направлении от одной станции к другой.

    При поступлении кадра данных к одной или нескольким станциям, эти станции копируют для себя этот кадр и вставляют в этот кадр подтверждение приема. Станция, выдавшая кадр данных в кольцо, при обратном его получении с подтверждением приема изымает этот кадр из кольца и выдает новый маркер для обеспечения возможности другим станциям сети передавать данные.

    На рисунке 5.16 описанный алгоритм доступа к среде иллюстрируется временной диаграммой. Здесь показана передача пакета А в кольце, состоящем из 6 станций, от станции 1 к станции 3.

    Время удержания одной станцией маркера ограничивается тайм-аутом удержания маркера, по истечении которого станция обязана передать маркер далее по кольцу.

    В сетях Token Ring 16 Мб/с используется также несколько другой алгоритм доступа к кольцу, называемый алгоритмом раннего освобождения маркера (Early Token Release). В соответствии с ним станция передает маркер доступа следующей станции сразу же после окончания передачи последнего бита кадра, не дожидаясь возвращения по кольцу этого кадра с битом подтверждения приема. В этом случае пропускная способность кольца используется более эффективно и приближается к 80 % от номинальной.

    Для различных видов сообщений передаваемым данным могут назначаться различные приоритеты.

    Каждая станция имеет механизмы обнаружения и устранения неисправностей сети, возникающих в результате ошибок передачи или переходных явлений (например, при подключении и отключении станции).

    Не все станции в кольце равны. Одна из станций обозначается как активный монитор, что означает дополнительную ответственность по управлению кольцом. Активный монитор осуществляет управление тайм-аутом в кольце, порождает новые маркеры (если необходимо), чтобы сохранить рабочее состояние, и генерирует диагностические кадры при определенных обстоятельствах. Активный монитор выбирается, когда кольцо инициализируется, и в этом качестве может выступить любая станция сети. Если монитор отказал по какой-либо причине, существует механизм, с помощью которого другие станции (резервные мониторы) могут договориться, какая из них будет новым активным монитором.




    Рис. 5.16. Принцип маркерного доступа
    1   2   3   4   5   6   7   8   9   10


    написать администратору сайта