Главная страница

Физика 9 класс. 1. Физика. Методы познания природы. Физические явления


Скачать 5.42 Mb.
Название1. Физика. Методы познания природы. Физические явления
АнкорФизика 9 класс
Дата13.05.2022
Размер5.42 Mb.
Формат файлаdocx
Имя файлаfizika_90_voprosov.docx
ТипДокументы
#527598
страница53 из 64
1   ...   49   50   51   52   53   54   55   56   ...   64

77. Дисперсия света.Радуга.


Диспе́рсия све́та (разложение света) — это явление, обусловленное зависимостью абсолютного показателя преломлениявещества от частоты (или длины волны) света (частотная дисперсия), или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты). Экспериментально открыта Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее.

  • Пространственной дисперсией называется зависимость тензора диэлектрической проницаемости среды от волнового вектора. Такая зависимость вызывает ряд явлений, называемых эффектами пространственной поляризации.

Один из самых наглядных примеров дисперсии — разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является различие фазовых скоростей распространения лучей света c различной длиной волны в прозрачном веществе — оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета). Обычно, чем больше частота световой волны, тем больше показатель преломления среды для неё и тем меньше фазовая скорость волны в среде:

  • у света красного цвета фазовая скорость распространения в среде максимальна, а степень преломления — минимальна,

  • у света фиолетового цвета фазовая скорость распространения в среде минимальна, а степень преломления — максимальна.

Однако в некоторых веществах (например в парах йода) наблюдается эффект аномальной дисперсии, при котором синие лучи преломляются меньше, чем красные, а другие лучи поглощаются веществом и от наблюдения ускользают. Говоря строже, аномальная дисперсия широко распространена, например, она наблюдается практически у всех газов на частотах вблизи линий поглощения, однако у паров иода она достаточно удобна для наблюдения в оптическом диапазоне, где они очень сильно поглощают свет.

Дисперсия света позволила впервые вполне убедительно показать составную природу белого света.

  • Белый свет разлагается в спектр и в результате прохождения через дифракционную решётку или отражения от неё (это не связано с явлением дисперсии, а объясняется природой дифракции). Дифракционный и призматический спектры несколько отличаются: призматический спектр сжат в красной части и растянут в фиолетовой и располагается в порядке убывания длины волны: от красного к фиолетовому; нормальный (дифракционный) спектр — равномерный во всех областях и располагается в порядке возрастания длин волн: от фиолетового к красному.

По аналогии с дисперсией света, также дисперсией называются и сходные явления зависимости распространения волн любой другой природы от длины волны (или частоты). По этой причине, например, термин закон дисперсии, применяемый как название количественного соотношения, связывающего частоту и волновое число, применяется не только к электромагнитной волне, но к любому волновому процессу.

Дисперсией объясняется факт появления радуги после дождя (точнее тот факт, что радуга разноцветная, а не белая).

Дисперсия является причиной хроматических аберраций — одних из аберраций оптических систем, в том числе фотографических и видео-объективов.

Огюстен Коши предложил эмпирическую формулу для аппроксимации зависимости показателя преломления среды от длины волны:

,

где   — длина волны в вакууме; abc — постоянные, значения которых для каждого материала должны быть определены в опыте. В большинстве случаев можно ограничиться двумя первыми членами формулы Коши. Впоследствии были предложены другие более точные, но и одновременно более сложные, формулы аппроксимации.

Дисперсия света в природе и искусстве[править | править вики-текст]



Из-за дисперсии можно наблюдать разные цвета.

  • Красный закат, один из цветов разложения света.

  • Радуга, чьи цвета обусловлены дисперсией, — один из ключевых образов культуры и искусства.

  • Благодаря дисперсии света, можно наблюдать цветную «игру света» на гранях бриллианта и других прозрачных гранёных предметах или материалах.

  • В той или иной степени радужные эффекты обнаруживаются достаточно часто при прохождении света через почти любые прозрачные предметы. В искусстве они могут специально усиливаться, подчеркиваться.

  • Разложение света в спектр (вследствие дисперсии) при преломлении в призме — довольно распространенная тема в изобразительном искусстве. Например, на обложке альбома The Dark Side of the Moon группы Pink Floyd изображено преломление света в призме с разложением в спектр.

Ра́дуга — атмосферное, оптическое и метеорологическое явление, наблюдаемое при освещении Солнцем (иногда Луной) множества водяных капель (дождя или тумана). Радуга выглядит как разноцветная дуга или окружность, составленная из цветов спектра (от внешнего края: красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый). Это те семь цветов, которые принято выделять в радуге в русской культуре (возможно, вслед за Ньютоном, см. ниже), но следует иметь в виду, что на самом деле спектр непрерывен, и его цвета плавно переходят друг в друга через множество промежуточных оттенков.

Центр окружности, описываемой радугой, лежит на прямой, проходящей через наблюдателя и Солнце, притом при наблюдении радуги (в отличие от гало) Солнце всегда находится за спиной наблюдателя, и одновременно видеть Солнце и радугу без использования оптических приспособлений невозможно. Для наблюдателя на земле радуга обычно выглядит как дуга, часть окружности, и чем выше точка наблюдения — тем она полнее (с горы или самолёта можно увидеть и полную окружность). Когда Солнце поднимается выше 42 градусов над горизонтом, радуга с поверхности Земли не видна[1].



Радуга возникает из-за того, что солнечный свет преломляется и отражается капельками воды (дождя или тумана), парящими ватмосфере. Эти капельки по-разному отклоняют свет разных цветов (показатель преломления воды для более длинноволнового (красного) света меньше, чем для коротковолнового (фиолетового), поэтому слабее всего отклоняется красный свет — на 137°30’, а сильнее всего фиолетовый — на 139°20’). В результате белый свет разлагается в спектр (происходит дисперсия света). Наблюдатель, который стоит спиной к источнику света, видит разноцветное свечение, которое исходит из пространства по концентрическим окружностям (дугам).



Ход лучей в сферической капле, образование первичной радуги

Радуга представляет собой каустику, возникающую при преломлении и отражении (внутри капли) плоскопараллельного пучка света на сферической капле. Как показано на рисунке (для пучка монохроматического света), отражённый свет имеет максимальную интенсивность для определённого угла между источником, каплей и наблюдателем (и этот максимум весьма «острый», то есть бо́льшая часть света выходит из капли, развернувшись практически точно на один и тот же угол). Дело в том, что угол, под которым уходит из капли отражённый и преломлённый ею луч, немонотонно зависит от расстояния от падающего (первоначального) луча до оси, параллельной ему и проходящей через центр капли (эта зависимость довольно проста, и её нетрудно явно вычислить), и зависимость эта имеет гладкий экстремум. Поэтому больше всего света капля разворачивает именно на этот угол и близкие к нему. При этом угле (значения которого немного различаются для разных показателей преломления, соответствующих лучам разного цвета) и возникает отражение-преломление максимальной яркости, составляющее (от разных капель) радугу («яркие» лучи от разных капель образуют конус с вершиной в зрачке наблюдателя и осью, проходящей через наблюдателя и Солнце)[2].

Для одного отражения внутри капли такой угол имеет одно значение, для двух — другое, и т. д. Этому соответствует первичная (радуга первого порядка), вторичная (радуга второго порядка) и т. д. радуга. Первичная — самая яркая, она уносит из капли большинство света. Радугу большего порядка обычно не удаётся увидеть, так как она очень слаба.



Схема образования радуги
1) сферическая капля
2) внутреннее отражение
3) первичная радуга
4) преломление
5) вторичная радуга
6) входящий луч света
7) ход лучей при формировании первичной радуги
8) ход лучей при формировании вторичной радуги
9) наблюдатель
10) область формирования первичной радуги
11) область формирования вторичной радуги
12) облако капелек

Чаще всего наблюдается первичная радуга, при которой свет претерпевает одно внутреннее отражение. Ход лучей показан на рисунке справа вверху. В первичной радуге красный цвет находится снаружи дуги, её угловойрадиус составляет 40-42°.

Иногда можно увидеть ещё одну, менее яркую радугу вокруг первой. Это вторичная радуга, которая образована светом, отражённым в каплях два раза. Во вторичной радуге «перевёрнутый» порядок цветов — снаружи находитсяфиолетовый, а внутри красный. Угловой радиус вторичной радуги 50-53°. Небо между двумя радугами обычно заметно более тёмное, эту область называют полосой Александра.

Появление радуги третьего порядка в естественных условиях случается чрезвычайно редко. Считается[3], что за последние 250 лет было только пять научных сообщений о наблюдении данного феномена. Тем более удивительным представляется появление в 2011 г. сообщения о том, что удалось не только наблюдать радугу четвёртого порядка, но и зарегистрировать её на фотографии[4]. В лабораторных условиях удаётся получать радуги гораздо более высоких порядков. Так, в статье, опубликованной в 1998 г., утверждалось, что авторам, используялазерное излучение, удалось получить радугу двухсотого порядка[5].

Свет первичной радуги поляризован на 96% вдоль направления дуги[6]. Свет вторичной радуги поляризован на 90%.

В яркую лунную ночь можно наблюдать и радугу от Луны. Поскольку рецепторы человеческого глаза, работающие при слабом освещении, — «палочки» — не воспринимают цвета, лунная радуга выглядит белесой; чем ярче свет, тем «цветнее» радуга (в её восприятие включаются цветовые рецепторы — «колбочки»).

Необычные радуги[править | править вики-текст]

Чаще всего наблюдается простая радуга-дуга, но известно много других оптических феноменов, которые возникают по похожим причинам или похоже выглядят. Среди них, например, туманная радуга, возникающая на капельках тумана, и огненная радуга (один из видов гало), возникающая на перистых облаках. Похож на радугу и слабыйпаргелий — гало в 22° слева и справа от солнца. Ночью можно увидеть лунную радугу.

Явления, ошибочно принимаемые за радугу[править | править вики-текст]

Перевёрнутая радуга

При определённых обстоятельствах можно увидеть двойную, перевёрнутую или даже кольцевую радугу. На самом деле это явления другого процесса — преломления света в кристаллах льда, рассеянного в атмосфере, и относятся к гало[7]. Для появления в небе перевернутой радуги (околозенитной дуги, зенитной дуги — одного из видов гало) необходимы специфические погодные условия, характерные для Северного и Южного полюсов. Перевернутая радуга образуется за счет преломления света, проходящего через льдинки тонкой завесы облаков на высоте 7 — 8 тысяч метров. Цвета в такой радуге располагаются тоже наоборот: фиолетовый вверху, а красный — внизу.
1   ...   49   50   51   52   53   54   55   56   ...   64


написать администратору сайта