Главная страница

Физика 9 класс. 1. Физика. Методы познания природы. Физические явления


Скачать 5.42 Mb.
Название1. Физика. Методы познания природы. Физические явления
АнкорФизика 9 класс
Дата13.05.2022
Размер5.42 Mb.
Формат файлаdocx
Имя файлаfizika_90_voprosov.docx
ТипДокументы
#527598
страница64 из 64
1   ...   56   57   58   59   60   61   62   63   64

90. Строение вселенной. Эволюция вселенной.


Вселе́нная — не имеющее строгого определения понятие в астрономии и философии[комм. 1]. Оно делится на две принципиально отличающиеся сущности: умозрительную (философскую) и материальную, доступную наблюдениям в настоящее время или в обозримом будущем. Если автор различает эти сущности, то, следуя традиции, первую называют Вселенной, а вторую — астрономической Вселенной или Метагалактикой (в последнее время этот термин практически вышел из употребления). Вселенная является предметом исследования космологии.

В историческом плане для обозначения «всего пространства» использовались различные слова, включая эквиваленты и варианты из различных языков, такие как «космос», «мир»[1], «небесная сфера». Использовался также термин «макрокосмос»[2], хотя он предназначен для определения систем большого масштаба, включая их подсистемы и части. Аналогично, слово «микрокосмос» используется для обозначения систем малого масштаба.

Любое исследование, любое наблюдение, будь то наблюдение физика за тем, как раскалывается ядро атома, ребёнка за кошкой или астронома, ведущего наблюдения за далёкой-далёкой галактикой, — всё это наблюдение за Вселенной, вернее, за отдельными её частями. Эти части служат предметом изучения отдельных наук, а Вселенной в максимально больших масштабах, и даже Вселенной как единым целым занимаются астрономия и космология; при этом под Вселенной понимается или область мира, охваченная наблюдениями и космическими экспериментами, или объект космологических экстраполяций — физическая Вселенная как целое[3].

Предметом статьи являются знания о наблюдаемой Вселенной как о едином целом: наблюдения , их теоретическая интерпретация  и история становления .

Среди однозначно интерпретируемых фактов относительно свойств Вселенной приведём здесь следующие:

Самый распространённый элемент — водород.

Расширение Вселенной с хорошей точностью линейно до z  0,1.

Реликтовый фон флуктуирует на масштабах четвёртого порядка малости.

Температура реликтового фона зависит от z.

Наличие Lα-леса в спектрах далёких объектов (квазаров) сz > 6.

Наличие сильной неоднородности в распределении галактик на масштабах < 100 Мпк.

В основу теоретических объяснений  и описаний этих явлений положен космологический принцип, суть которого в том, что наблюдатели, независимо от места и направления наблюдения, в среднем обнаруживают одну и ту же картину. Сами теории стремятся объяснить и описать происхождение химических элементов , ход развития  и причину расширения , возникновение крупномасштабной структуры .

Первый значительный толчок в сторону современных представлений о Вселенной совершил Коперник.  Второй по величине вклад внесли Кеплер и Ньютон.  Но поистине революционные изменения в наших представлениях о Вселенной происходят лишь в XX веке.

Содержание

  [убрать] 

  • 1 Этимология

  • 2 Облик Вселенной

  • 3 Наблюдения

    • 3.1 Шкала расстояний и космологическое красное смещение

      • 3.1.1 Метод тригонометрического параллакса

      • 3.1.2 Метод определения расстояния по цефеидам и звёздам типа RR Лиры

      • 3.1.3 Метод определения расстояния по сверхновым типа Ia

      • 3.1.4 Метод определения расстояния по гравитационным линзам

      • 3.1.5 Метод определения расстояния по красным гигантам

      • 3.1.6 Проблемы и современные дискуссии

    • 3.2 Изучение реликтового фона

      • 3.2.1 Эффект Сюняева — Зельдовича

      • 3.2.2 Поляризация

      • 3.2.3 Флуктуации реликтового фона

    • 3.3 Наблюдение далёких объектов

      • 3.3.1 Лайман-альфа лес

      • 3.3.2 Гравитационно-линзированные объекты

      • 3.3.3 Наблюдения квазаров

      • 3.3.4 Наблюдения гамма-всплесков

    • 3.4 Изучение эволюции Вселенной и её крупномасштабной структуры

      • 3.4.1 Изучение крупномасштабной структуры

      • 3.4.2 Наблюдения звёздных скоплений

      • 3.4.3 Наблюдения непроэволюционировавших объектов

  • 4 Теоретические модели

    • 4.1 Модель расширяющейся Вселенной

      • 4.1.1 Модель Фридмана

      • 4.1.2 Объяснение закона Хаббла

      • 4.1.3 ΛCDM

      • 4.1.4 Дальнейшая эволюция расширения

    • 4.2 Теория Большого взрыва (модель горячей Вселенной)

      • 4.2.1 Энтропия Вселенной

        • 4.2.1.1 Первые три минуты. Первичный нуклеосинтез

      • 4.2.2 Проблемы теории Большого взрыва

    • 4.3 Инфляционная модель

      • 4.3.1 Мультивселенная

      • 4.3.2 Альтернативы теории инфляции

    • 4.4 Теория эволюции крупномасштабных структур

      • 4.4.1 Общие положения

      • 4.4.2 Эпоха до рекомбинации

      • 4.4.3 После рекомбинации

      • 4.4.4 Стадия доминирования тёмной энергии

      • 4.4.5 Проблемы теории

    • 4.5 Проблемы современных моделей

  • 5 История открытия Вселенной

    • 5.1 Древняя космография и ранняя астрономия

      • 5.1.1 Цивилизации Азии и Средиземноморья

        • 5.1.1.1 Месопотамия

        • 5.1.1.2 Древний Египет

        • 5.1.1.3 Древняя Греция

      • 5.1.2 Цивилизации Северной и Южной Америк

        • 5.1.2.1 Месоамерика

    • 5.2 Средневековье

      • 5.2.1 Европа

      • 5.2.2 Исламский мир

      • 5.2.3 Русь

    • 5.3 Эпоха Возрождения (XV—XVI вв)

      • 5.3.1 Раннее Возрождение (XV в)

      • 5.3.2 Гелиоцентрическая система (вторая половина XVI в)

      • 5.3.3 Позднее Возрождение (вторая половина XVI в)

    • 5.4 Научная революция (XVII в)

    • 5.5 XVIII—XIX вв.

    • 5.6 XX век

  • 6 См. также

  • 7 Примечания

Этимология

В русском языке слово «Вселенная» является заимствованием из старославянского «въсєленаꙗ»[4], что является калькой древнегреческого слова «ойкумена»[5] (др.-греч. οἰκουμένη), от глагола οἰκέω «населяю, обитаю» и в первом значении имело смысл лишь обитаемой части мира. Поэтому русское слово «Вселенная» родственносуществительному «вселение» и лишь созвучно определительному местоимению «всё». Самое общее определение для «Вселенной» среди древнегреческихфилософов, начиная с пифагорейцев, было τὸ πᾶν (Всё), включавшее в себя как всю материю (τὸ ὅλον), так и весь космос (τὸ κενόν)[6].

Облик Вселенной

Химический состав[7]

Средняя температура реликтового излучения

Плотность материи во вселенной[8][9]

Уравнение состояния[8]

H — 75 %
He — 23 %
O — 1 %
C — 0,5 %

2,725 К

10−29г/см3. Из них:
Тёмная энергия — 68,3 %
Тёмная материя — 26,8 %
Барионное вещество — 4,9 %

-1,1±0,4

Представляя Вселенную как весь окружающий мир, мы сразу делаем её уникальной и единственной. И вместе с этим лишаем себя возможности описать её в терминах классической механики: из-за своей уникальности Вселенная ни с чем не может взаимодействовать, она — система систем, и поэтому в её отношении теряют свой смысл такие понятия, как масса, форма, размер. Вместо этого приходится прибегать к языку термодинамики, употребляя такие понятия как плотность, давление,температура, химический состав.

Расширение Вселенной

Однако, Вселенная мало похожа на обычный газ. Уже на самых крупных масштабах мы сталкиваемся с расширением Вселенной и реликтовым фоном. Природа первого явления — гравитационное взаимодействие всех существующих объектов. Именно его развитием определяется будущее Вселенной. Второе же явление — это наследство ранних эпох, когда свет горячего Большого взрыва практически перестал взаимодействовать с материей, отделился от неё. Сейчас, из-за расширения Вселенной, из видимого диапазона большинство излучённых тогда фотонов перешли в микроволновой радиодиапазон.

Иерархия масштабов во Вселенной

При переходе к масштабам меньше 100 Мпк обнаруживается чёткая ячеистая структура. Внутри ячеек пустота — войды. А стенки образованы из сверхскоплений галактик. Эти сверскопления — верхний уровень целой иерархии, затем идут скопления галактик, потом локальные группы галактик, а самый нижний уровень (масштаб5—200 кпк) — это огромное многообразие самых различных объектов. Конечно, все они — галактики, но все они различны: это и линзовидные, неправильные,эллиптические, спиральные, с полярным кольцами, с активными ядрами и т. д.

Из них отдельно стоит упомянуть квазары, отличающихся очень высокой светимостью и настолько малым угловым размером, что в течение нескольких лет после открытия их не удавалось отличить от «точечных источников» — звёзд. Болометрическая светимость квазаров может достигать 1046 — 1047 эрг/с[10].

Переходя к составу галактики мы обнаруживаем: тёмную материю, космические лучи, межзвёздный газ, шаровые скопления, рассеянные скопления, двойные звёзды, звёздные системы большей кратности, сверхмассивные чёрные дыры и чёрные дыры звёздной массы, и, наконец, одиночные звёзды разного населения.

Их индивидуальная эволюция и взаимодействие друг с другом порождает множество явлений. Так предполагается, что источником энергии у упомянутых уже квазаров служит аккреция межзвёздного газа на сверхмассивную центральную чёрную дыру.

Отдельно стоит упомянуть и о гамма-всплесках — это внезапные кратковременные локализуемые повышения интенсивности космического гамма-излучения с энергией в десятки и сотни кэВ[11]. Из оценок расстояний до гамма-всплесков можно сделать вывод, что излучаемая ими энергия в гамма-диапазоне достигает 1050 эрг. Для сравнения, светимость всей галактики в этом же диапазоне составляет «всего» 1038 эрг/c. Такие яркие вспышки видны из самых далеких уголков Вселенной, так у GRB 090423 красное смещение z = 8,2.

Сложнейшим комплексом, включающим в себя множество процессов, является эволюция галактики[12]:



В центре диаграммы представлены важные этапы эволюции одной звезды: от её формирования до смерти. Их ход малозависим от того, что происходит со всей галактикой в целом. Однако, общее число вновь образующихся звёзд и их параметры подвержены значительному внешнему влиянию. Процессы, масштабы которых сравнимы или больше размера галактики (на диаграмме это все остальные, не вошедшие в центральную область), меняют морфологическую структуру, темпзвездообразования, а значит, и скорость химической эволюции, спектр галактики и так далее.

Вселенная постоянно расширяется. Тот момент, с которого Вселенная начала расширятся, принято считать ее началом. Тогда началась первая и полная драматизма эра в истории вселенной, ее называют  “большим взрывом”.

Под расширением Вселенной подразумевается такой процесс, когда то же самое количество элементарных частиц и фотонов занимают постоянно возрастающий объём. Средняя плотность Вселенной в результате расширения постепенно понижается. Из этого следует, что в прошлом плотность Вселенной была больше, чем в настоящее время. Можно предположить, что в глубокой древности (примерно десять миллиардов лет назад) плотность Вселенной была очень большой. Кроме того высокой должна была быть и температура, настолько высокой, что плотность излучения превышала плотность вещества. Иначе говоря, энергия всех фотонов содержащихся в 1 куб. см была больше суммы общей энергии частиц, содержащихся в 1 куб. см. На самом раннем этапе, в первые мгновения “большого взрыва” вся материя была сильно раскаленной  и густой смесью частиц, античастиц и высокоэнергичных γ-фотонов. Частицы при столкновении с соответствующими античастицами аннигилировали, но возникающие γ-фотоны моментально материализовались в частицы и античастицы. [7;52]

Начало Вселенной

На самом раннем этапе, в первые мгновения “большого взрыва” вся материя была сильно раскаленной  и густой смесью частиц, античастиц и высокоэнергичных гамма-фотонов. Частицы при столкновении с соответствующими античастицами аннигилировали, но возникающие гамма-фотоны моментально материализовались в частицы и античастицы.

Рождение галактик

Колоссальные водородные сгущения - зародыши сверх галактик и скоплений галактик - медленно вращались. Внутри их образовывались вихри, похожие на водовороты. Их диаметр достигал примерно ста тысяч световых лет. Мы называем эти системы протогалактиками, т.е. зародышами галактик. Несмотря на свои невероятные размеры, вихри протогалактик были всего лишь ничтожной частью сверхгалактик и по размеру не превышали одну тысячную сверхгалактики. Сила гравитации образовывала из этих вихрей системы звезд, которые мы называем галактиками. Некоторые из галактик до сих пор напоминают нам гигантское завихрение. Астрономические исследования показывают, что скорость вращения завихрения предопределила форму галактики, родившейся из этого вихря. Выражаясь научным языком, скорость осевого вращения определяет тип будущей галактики. Из медленно вращающихся вихрей возникли эллиптические галактики, в то время как из быстро вращающихся родились сплющенные спиральные галактики. В результате силы тяготения очень медленно вращающийся вихрь сжимался в шар или несколько сплюнутый эллипсоид. Размеры такого правильного гигантского водородного облака были от нескольких десятков до нескольких сотен тысяч световых лет. Нетрудно определить, какие из водородных атомов вошли в состав рождающейся эллиптической, точнее говоря эллипсоидальной галактики, а какие остались в космическом пространстве вне нее. Если энергия связи сил гравитации атома на периферии превышала его кинетическую энергию, атом становился составной частью галактики. Это условие называется критерием Джинса. С его помощью можно определить, в какой степени зависела масса и величина протогалактики от плотности и температуры водородного газа.

Протогалактика, которая вообще не вращалась, становилась родоначальницей шаровой галактики. Сплющенные эллиптические галактики рождались из медленно вращающихся протогалактик. Из-за недостаточной центробежной силы преобладала сила гравитационная. Протогалактика сжималась и плотность водорода в ней возрастала. Как только плотность достигала определенного уровня, начали выделяться и сжиматься сгустки водорода. Рождались протозвезды, которые позже эволюционировали в звезды. Рождение всех звезд в шаровой или слегка приплюснутой галактике происходило почти одновременно. Этот процесс продолжался относительно недолго, примерно сто миллионов лет. На начальном этапе расширения Вселенной из фотонов рождались частицы и античастицы. Этот процесс постоянно ослабевал, что привело к вымиранию частиц и античастиц. Согласно тому, как материализация в результате понижающейся температуры раскаленного вещества приостановилась. Эволюцию Вселенной принято разделять на четыре эры: адронную, лептонную, фотонную и звездную.[1;76]

Эры эволюции Вселенной

а) Адронная эра.

 При очень высоких температурах и плотности в самом начале существования Вселенной материя состояла из элементарных частиц. Вещество на самом раннем этапе состояло, прежде всего, из адронов, и поэтому ранняя эра эволюции Вселенной называется адронной, несмотря на то, что в то время существовали и лептоны. Никогда после этого сильное взаимодействие (ядерная сила) не проявлялась во Вселенной в такой мере, как в адронную эру, длившуюся всего лишь одну десятитысячную долю секунды.

б) Лептонная эра.

Когда энергия частиц и фотонов понизилась в пределах от 100 Мэв до 1 Мэв в, веществе было много лептонов. Температура была достаточно высокой, чтобы обеспечить интенсивное возникновение электронов, позитронов и нейтрино. Барионы (протоны и нейтроны), пережившие адронную эру, стали по сравнению с лептонами и фотонами встречаться гораздо реже. Лептонная эра начинается с распада последних адронов - пионов - в мюоны и мюонное нейтрино, а кончается через несколько секунд при температуре 1010K, когда энергия  фотонов уменьшилась до 1 Мэв и материализация электронов и позитронов прекратилась. Во время этого этапа начинается независимое существование электронного и мюонного нейтрино, которые мы называем  “реликтовыми”. Всё пространство Вселенной наполнилось огромным количеством реликтовых электронных и мюонных нейтрино. Возникает нейтринное море.

в) Фотонная эра или эра излучения. Т Вселенной понизилась до 1010K, а энергия γ-фотонов достигла 1 Мэв, произошла только аннигиляция электронов и позитронов. Новые электронно-позитронные пары не могли возникать вследствие материализации, потому, что фотоны не обладали достаточной энергией. Но аннигиляция электронов и позитронов продолжалась дальше, пока давление излучения полностью не отделило вещество от антивещества. Со времени адронной и лептонной эры Вселенная была заполнена фотонами. К концу лептонной эры фотонов было в два миллиарда раз больше, чем протонов и электронов. Важнейшей составной Вселенной после лептонной эры становятся фотоны, причем не только по количеству, но и по энергии.

Большой взрыв продолжался сравнительно недолго, всего лишь одну тридцатитысячную нынешнего возраста Вселенной. Несмотря на краткость срока, это всё же была самая славная эра Вселенной. Никогда после этого эволюция Вселенной не была столь стремительна, как в самом её начале, во время “большого взрыва”. Все события во Вселенной в тот период касались свободных элементарных частиц, их превращений, рождения, распада, аннигиляции. Не следует забывать, что в столь короткое время (всего лишь несколько секунд) из богатого разнообразия видов элементарных частиц исчезли почти все: одни путем аннигиляции (превращение в гамма-фотоны), иные путем распада на самые легкие барионы (протоны) и на самые легкие заряженные лептоны (электроны).

 После “большого взрыва” наступила продолжительная эра вещества, эпоха преобладания частиц. Мы называем её звездной эрой. Она продолжается со времени завершения “большого взрыва” (приблизительно 300 000 лет) до наших дней. По сравнению с периодом “большого взрыва” её развитие представляется как будто слишком медленным. Это происходит по причине низкой плотности и температуры. Взрыв суперновой или гигантский взрыв галактики - ничтожные явления в сравнении с большим взрывом.

С атомов водорода начинается звездная эра - эра частиц, точнее говоря, эра протонов и электронов.

Вселенная вступает в звездную эру в форме водородного газа с огромным количеством  световых и ультрафиолетовых фотонов. Водородный газ расширялся в различных частях Вселенной с разной скоростью. Неодинаковой была также и его плотность. Он образовывал огромные сгустки, во много миллионов световых лет. Масса таких космических водородных сгустков была в сотни тысяч, а то и в миллионы раз больше, чем масса нашей теперешней Галактики. Расширение газа внутри сгустков шло медленнее, чем расширение разреженного водорода между самими сгущениями. Позднее из отдельных участков с помощью собственного притяжения образовались сверхгалактики и скопления галактик. Итак, крупнейшие структурные единицы Вселенной - сверхгалактики - являются результатом неравномерного распределения водорода, которое происходило на ранних этапах истории Вселенной.[7;68]
1   ...   56   57   58   59   60   61   62   63   64


написать администратору сайта