Главная страница

Физика 9 класс. 1. Физика. Методы познания природы. Физические явления


Скачать 5.42 Mb.
Название1. Физика. Методы познания природы. Физические явления
АнкорФизика 9 класс
Дата13.05.2022
Размер5.42 Mb.
Формат файлаdocx
Имя файлаfizika_90_voprosov.docx
ТипДокументы
#527598
страница57 из 64
1   ...   53   54   55   56   57   58   59   60   ...   64

83. Строение атомного ядра. Открытие нейтрона. Физический смысл периодической системы Менделеева.


А́томное ядро́ — центральная часть атома, в которой сосредоточена основная его масса (более 99,9 %). Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относят атом. Размеры ядер различных атомов составляют несколько фемтометров, что более чем в 10 тысяч раз меньше размеров самого атома.

Атомные ядра изучает ядерная физика.

Атомное ядро состоит из нуклонов — положительно заряженных протонов и нейтральных нейтронов, которые связаны между собой при помощи сильного взаимодействия. Протон и нейтрон обладают собственным моментом количества движения (спином), равным  [сн 1] и связанным с ним магнитным моментом. Единственный стабильный атом, не содержащий нейтрон в ядре — лёгкий водород (протий).

Атомное ядро, рассматриваемое как класс частиц с определённым числом протонов и нейтронов, принято называть нуклидом.
В некоторых редких случаях могут образовываться короткоживущие экзотические атомы у которых вместо нуклона ядром служат иные частицы.

Количество протонов в ядре называется его зарядовым числом   — это число равно порядковому номеру элемента, к которому относится атом, в таблице (Периодической системе элементов) Менделеева. Количество протонов в ядре определяет структуруэлектронной оболочки нейтрального атома и, таким образом, химические свойства соответствующего элемента. Количество нейтронов в ядре называется его изотопическим числом  . Ядра с одинаковым числом протонов и разным числом нейтронов называютсяизотопами. Ядра с одинаковым числом нейтронов, но разным числом протонов — называются изотонами. Термины изотоп и изотон используются также применительно к атомам, содержащим указанные ядра, а также для характеристики нехимических разновидностей одного химического элемента. Полное количество нуклонов в ядре называется его массовым числом   ( ) и приблизительно равно средней массе атома, указанной в таблице Менделеева. Нуклиды с одинаковым массовым числом, но разным протон-нейтронным составом принято называть изобарами.

Как и любая квантовая система, ядра могут находиться в метастабильном возбуждённом состоянии, причём в отдельных случаяхвремя жизни такого состояния исчисляется годами. Такие возбуждённые состояния ядер называются ядерными изомерами[1][2][3].

Нейтро́н (от лат. neuter — ни тот, ни другой) — тяжёлая элементарная частица, не имеющая электрического заряда. Нейтрон является фермионом и принадлежит к классу барионов. Нейтроны и протоны являются двумя главными компонентами атомных ядер[3]; общее название для протонов и нейтронов — нуклоны.







Нейтрон

Символ



Масса

939,565379(21) МэВ[1],1,674927351(74)·10−27 кг[1],1,00866491600(43) а. е. м.[1]

Античастица

антинейтрон 

Участвует во взаимодействиях

Сильное, cлабое,электромагнитное игравитационное

Классы

фермион, адрон, барион,N-барион, нуклон

Квантовые числа

Электрический заряд

0

Спин

1/2

Изотопический спин

1/2

Барионное число

1

Странность

0

Очарование

0

Другие свойства

Время жизни

880,0 ± 0,9 c[2]

Схема распада



Кварковый состав

udd

Открытие нейтрона (1932) принадлежит физику Джеймсу Чедвику, который объяснил результаты опытов В. Боте и Г. Беккера (1930), в которых обнаружилось, что   - частицы, вылетающие при распаде полония, воздействуя на лёгкие элементы, приводят к возникновению сильно проникающего излучения. Чедвик первый предположил, что новое проникающее излучение состоит из нейтронов и определил их массу[4]. За это открытие он получил Нобелевскую премию по физике в 1935 году.

В 1930 г. В. А. Амбарцумян и Д. Д. Иваненко показали, что ядро не может, как считалось в то время, состоять из протонов и электронов, что электроны, вылетающие из ядра при бета-распаде, рождаются в момент распада, и что кроме протонов, в ядре должны присутствовать некие нейтральные частицы.[5][6]

В 1930 Вальтер Боте и Г. Бекер, работавшие в Германии, обнаружили, что если высокоэнергетичные альфа-частицы, испускаемые полонием-210, попадают на некоторые лёгкие элементы, в особенности на бериллий или литий, образуется излучение с необычно большой проникающей способностью. Сначала считалось, что это — гамма-излучение, но выяснилось, что оно обладает гораздо большей проникающей способностью, чем все известные гамма-лучи, и результаты эксперимента не могут быть таким образом интерпретированы. Важный вклад сделали в 1932 Ирени Фредерик Жолио-Кюри. Они показали, что если это неизвестное излучение попадает на парафин или любое другое соединение, богатое водородом, образуются протоны высоких энергий. Само по себе это ничему не противоречило, но численные результаты приводили к нестыковкам в теории. Позднее в том же 1932 году английский физик Джеймс Чедвик провёл серию экспериментов, в которых он показал, что гамма-лучевая гипотеза несостоятельна. Он предположил, что это излучение состоит из незаряженных частиц с массой, близкой к массе протона, и провёл серию экспериментов, подтвердивших эту гипотезу. Эти незаряженные частицы были названы нейтронами от латинского корня neutral и обычного для частиц суффиксаon (он). В том же 1932 г. Д. Д. Иваненко[7] и затем В. Гейзенберг предположили, что атомное ядро состоит из протонов и нейтронов.

Периодический закон Д. И. Менделеева является основой современной химии. Изучение строения атомов вскрывает физический смысл периодического закона и объясняет закономерности изменения свойств элементов в периодах и в группах периодической системы. Знание строения атомов является необходимым для понимания причин образования химической связи. Природа химической связи в молекулах определяет свойства веществ. Поэтому данный раздел является одним из важнейших разделов общей химии. [1]

Периодический закон Д. И. Менделеева является основой современной химии. Изучение строения атомов вскрывает физический смысл периодического закона и объясняет закономерности изменения свойств элементов в периодах и в группах периодической системы. Знание строения атомов является необходимым для понимания причин образования химической связи. Природа химше-ской связи в молекулах определяет свойства веществ, поэтому данный раздел является одним из важнейших разделов общей химии. Изучение этого раздела способствует формированию представлений о материальном единстве мира. [2]

Получив необходимое физическое обоснование, периодический закон предстал перед нами не только как химический, но и как физический закон. Однако нельзя забывать, что пока вскрыт только физический смысл периодического закона; более глубокое физическое обоснование и тем более математическая интерпретация пока не найдены. [3]



Проекция орбитального момента 2р - электрона на направление магнитного поля.

Таким образом, электрон в атоме характеризуется четырьмя квантовыми числами п, I m, s, выражающими четыре физических величины: энергию, орбитальный момент количества движения, его проекцию на выделенное направление в пространстве ( направление магнитного поля) и такую же проекцию спинового момента. Но без них не поймешь основных свойств атома, не поймешь физического смысла периодического закона Менделеева. [4]



Формы электронных облаков, соответствующие различным атомным орбиталям.

В этом заключается принципиальная значимость квантовых чисел в теории атома и в раскрытии физического смысла Периодического закона. [5]

Современная атомная физика и химия более глубоко вскрыли содержание периодической системы, развили ее, дали ответ на те вопросы, которые оставались еще не ясными. В частности, причина химической периодичности не могла быть раскрыта в рамках только химии. Паули), позволило вскрыть физический смысл периодического закона. Основная сущность этого закона заключается в том, что идущее по мере увеличения положительного заряда ядра ( а следовательно, и числа внешних электронов) последовательное развитие атомных структур протекает с периодическим образованием сходных электронных систем. Не атомный вес, а заряд ядра является основной характеристикой атома, само периодическое повторение аналогичных особенностей в свойствах элементов и форм их соединений в молекулах есть следствие периодичности в строении электронных оболочек. [6]

Развитие науки подтвердило гениальное предвидение Менделеева о том, что периодическому закону не грозит разрушение, а обещаются только надстройка и развитие. Заряд ядра определяет электронное строение атома, которое раскрывает физический смысл периодического закона. [7]

На первом этапе становления и развития периодического закона роль оксидов как характеристических соединений была исключительно велика. С развитием теории строения атома и в результате выявленияфизического смысла периодического закона, казалось бы, роль характеристических соединений утрачивается. Но периодически изменяются не только свойства элементов, но также формы и свойства их соединений. Поэтому для описания химического облика элементов характеристические соединения по-прежнему играют исключительно важную роль. [8]

Оксиды занимают особое положение среди всех бинарных соединений. Менделеев относил высшие солеобразующие окислы к характеристическим соединениям. На первом этапе становления и развития Периодического закона роль оксидов как характеристических соединений была исключительно велика. С развитием теории строения атома и в результате выявления физического смысла Периодического закона, казалось бы, роль характеристических соединений утрачивается. Но периодически изменяются не только свойства элементов, но также формы и свойства их соединений. Поэтому для описания химического облика элементов характеристические соединения по-прежнему играют исключительно важную роль. [9]
1   ...   53   54   55   56   57   58   59   60   ...   64


написать администратору сайта