Главная страница

Физика 9 класс. 1. Физика. Методы познания природы. Физические явления


Скачать 5.42 Mb.
Название1. Физика. Методы познания природы. Физические явления
АнкорФизика 9 класс
Дата13.05.2022
Размер5.42 Mb.
Формат файлаdocx
Имя файлаfizika_90_voprosov.docx
ТипДокументы
#527598
страница63 из 64
1   ...   56   57   58   59   60   61   62   63   64

, как правило, с перигелием в пределах орбит внутренних планет и афелием далеко за Плутоном. Когда комета входит во внутреннюю область Солнечной системы и приближается к Солнцу, её ледяная поверхность начинает испаряться и ионизироваться, создавая кому — длинное облако из газа и пыли, часто видимое с Земли невооружённым глазом.

Короткопериодические кометы имеют период меньше 200 лет. Период же долгопериодических комет может равняться тысячам лет. Полагают, что источником короткопериодических служит пояс Койпера, в то время как источником долгопериодических комет, таких как комета Хейла — Боппа, считается облако Оорта. Многие семейства комет, такие как Околосолнечные кометы Крейца, образовались в результате распада одного тела[91]. Некоторые кометы с гиперболическими орбитами могут быть из-за пределов Солнечной системы, но определение их точных орбит затруднено[92]. Старые кометы, у которых большая часть их летучих веществ уже испарилась, часто классифицируют как астероиды[93].

Кентавры[править | править вики-текст]

Основная статья: Кентавры (астероиды)

Кентавры — ледяные кометоподобные объекты с большой полуосью, большей, чем у Юпитера (5,5 а. е.) и меньшей чем у Нептуна(30 а. е.). У крупнейшего из известных кентавров, Харикло, диаметр приблизительно равен 250 км[94]. Первый обнаруженный кентавр, Хирон, также классифицирован как комета (95P), из-за того что по мере приближения к Солнцу у него возникает кома, как и у комет[95].

Транснептуновые объекты[править | править вики-текст]

Основная статья: Транснептуновый объект

Пространство за Нептуном, или «регион транснептуновых объектов», всё ещё в значительной степени не исследовано. Предположительно, оно содержит только малые тела, состоящие главным образом из камней и льда. Этот регион иногда также включают во «внешнюю Солнечную систему», хотя чаще этот термин используют, чтобы обозначать пространство за поясом астероидов и до орбиты Нептуна.

Пояс Койпера[править | править вики-текст]

Основная статья: Пояс Койпера



Известные объекты пояса Койпера (зелёные), показанные относительно четырёх внешних планет. Масштаб показан в астрономических единицах. Тёмный участок внизу картинки — область, расположенная для земного наблюдателя на фоне Млечного Пути, яркость звёзд которого не позволяет различить тусклые объекты

Пояс Койпера — область реликтов времён образования Солнечной системы, является большим поясом осколков, подобным поясу астероидов, но состоит в основном из льда[96]. Простирается между 30 и 55 а. е. от Солнца. Составлен главным образом малыми телами Солнечной системы, но многие из крупнейших объектов пояса Койпера, такие как Квавар, Варуна и Орк, могут быть переклассифицированы в карликовые планеты после уточнения их параметров. По оценкам, более 100 000 объектов пояса Койпера имеют диаметр больше 50 км, но полная масса пояса равна только одной десятой или даже одной сотой массы Земли[97]. Многие объекты пояса обладают множественными спутниками[98], и у большинства объектов орбиты располагаются вне плоскости эклиптики[99].

Пояс Койпера может быть примерно разделен на «классические» и резонансные объекты (главным образом плутино)[96]. Резонансные объекты находятся в орбитальном резонансе с Нептуном (например, совершая два оборота на каждые три оборота Нептуна, или один на каждые два). Ближайшие к Солнцу резонансные объекты могут пересекать орбиту Нептуна. Классические объекты пояса Койпера не находятся с Нептуном в орбитальном резонансе и располагаются на расстоянии примерно от 39,4 до 47,7 а. е. от Солнца[100]. Элементы классического пояса Койпера классифицированы как кьюбивано, от индекса первого обнаруженного объекта — (15760) 1992 QB1 («QB1» произносится как «кью-би-ван»); и имеют близкие к круговым орбиты с малым углом наклона к эклиптике[101].

Плутон[править | править вики-текст]

Основная статья: Плутон

Плутон — карликовая планета, крупнейший известный объект пояса Койпера. После обнаружения в 1930 году считался девятой планетой; положение изменилось в 2006 году с принятием формального определения планеты. У Плутона умеренный эксцентриситет орбиты с наклонением в 17 градусов к плоскости эклиптики, и он то приближается к Солнцу на расстояние 29,6 а. е., оказываясь к нему ближе Нептуна, то удаляется на 49,3 а. е.

Неясна ситуация с крупнейшим спутником Плутона — Хароном: продолжит ли он классифицироваться как спутник Плутона или будет переклассифицирован в карликовую планету. Поскольку центр масс системы Плутон — Харон находится вне их поверхностей, они могут рассматриваться в качестве двойной планетной системы. Четыре меньших спутника — Никта, Гидра, Кербер и Стикс — обращаются вокруг Плутона и Харона.

Плутон находится с Нептуном в орбитальном резонансе 3:2 — на каждые три оборота Нептуна вокруг Солнца приходится два оборота Плутона, весь цикл занимает 500 лет. Объекты пояса Койпера, чьи орбиты обладают таким же резонансом, называют плутино[102].

Хаумеа[править | править вики-текст]

Основная статья: Хаумеа

Хаумеа — карликовая планета, хоть и меньше Плутона, крупнейший из известных классических объектов пояса Койпера (не находящихся в подтверждённом резонансе с Нептуном). Хаумеа имеет сильно вытянутую форму и период вращения вокруг своей оси около 4 часов. Два спутника и ещё по крайней мере восемь транснептуновых объектов являются частью семейства Хаумеа, которое сформировалась миллиарды лет назад из ледяных осколков, после того как большое столкновение разрушило ледяную мантию Хаумеа. Орбита карликовой планеты обладает большим наклонением — 28°.

Макемаке[править | править вики-текст]

Основная статья: Макемаке

Макемаке — первоначально обозначался как 2005 FY9, в 2008 году получил имя и был объявлен карликовой планетой[29]. В настоящее время является вторым по видимой яркости в поясе Койпера после Плутона. У Макемаке пока не обнаружено спутников. Имеет диаметр от 50 до 75 % диаметра Плутона, орбита наклонена на 29°[103], эксцентриситет около 0,16.



Сравнительные размеры крупнейших ТНО и Земли.
Изображения объектов — ссылки на статьи

Рассеянный диск[править | править вики-текст]

Основная статья: Рассеянный диск

Рассеянный диск частично перекрывается с поясом Койпера, но простирается намного далее за его пределы и, как предполагают, является источником короткопериодических комет. Предполагают, что объекты рассеянного диска были выброшены на беспорядочные орбиты гравитационным влиянием Нептуна в период его миграции на ранней стадии формирования Солнечной системы: одна из концепций базируется на предположении о том, что Нептун и Уран сформировались ближе к Солнцу, чем они есть сейчас, а затем переместились на свои современные орбиты[104][105][106]. Многие объекты рассеянного диска (SDO) имеют перигелий в пределах пояса Койпера, но их афелий может простираться до 150 а. е. от Солнца. Орбиты объектов также весьма наклонены к поясу эклиптики и часто почти перпендикулярны ему. Некоторые астрономы полагают, что рассеянный диск — это область пояса Койпера, и описывают объекты рассеянного диска как «рассеянные объекты пояса Койпера»[107]. Некоторые же астрономы также классифицируют кентавры как рассеянные внутрь объекты пояса Койпера, наряду с рассеянными наружу объектами рассеянного диска[108].

Эрида[править | править вики-текст]

Основная статья: Эрида

Эрида (68 а. е. в среднем) — крупнейший известный объект рассеянного диска. Так как её диаметр первоначально был оценён в 2400 км, то есть по крайней мере на 5 % больше, чем у Плутона, то её открытие породило споры о том, что именно следует называть планетой. Она является одной из крупнейших известных карликовых планет[109]. У Эриды имеется один спутник — Дисномия. Как и у Плутона, её орбита является чрезвычайно вытянутой, с перигелием 38,2 а. е. (примерное расстояние Плутона от Солнца) и афелием 97,6 а. е.; и орбита сильно (44,177°) наклонена к плоскости эклиптики.

Отдалённые области[править | править вики-текст]

Вопрос о том, где именно заканчивается Солнечная система и начинается межзвёздное пространство, неоднозначен. Ключевыми в их определении принимают два фактора: солнечный ветер и солнечное тяготение. Внешняя граница солнечного ветра — гелиопауза, за ней солнечный ветер и межзвёздное вещество смешиваются, взаимно растворяясь. Гелиопауза находится примерно в четыре раза дальше Плутона и считается началом межзвёздной среды[47]. Однако предполагают, что область, в которой гравитация Солнца преобладает над галактической — сфера Хилла, простирается в тысячу раз дальше[110].

Гелиосфера[править | править вики-текст]

Основная статья: Гелиосфера

Межзвёздная среда в окрестностях Солнечной системы неоднородна. Наблюдения показывают, что Солнце движется со скоростью около 25 км/с сквозь Местное межзвёздное облако и может покинуть его в течение следующих 10 тысяч лет. Большую роль во взаимодействии Солнечной системы с межзвёздным веществом играетсолнечный ветер.

Наша планетная система существует в крайне разреженной «атмосфере» солнечного ветра — потока заряженных частиц (в основном водородной и гелиевой плазмы), с огромной скоростью истекающих из солнечной короны. Средняя скорость солнечного ветра, наблюдаемая на Земле, составляет 450 км/с. Эта скорость превышает скорость распространения магнитогидродинамических волн, поэтому при взаимодействии с препятствиями плазма солнечного ветра ведёт себя аналогично сверхзвуковому потоку газа. По мере удаления от Солнца, плотность солнечного ветра ослабевает, и наступает момент, когда он оказывается более не в состоянии сдерживать давление межзвёздного вещества. В процессе столкновения образуется несколько переходных областей.

Сначала солнечный ветер тормозится, становится более плотным, тёплым и турбулентным[111]. Момент этого перехода называется границей ударной волны(англ. terminationshock) и находится на расстоянии около 85—95 а. е. от Солнца[111] (по данным, полученным с космических станций «Вояджер-1»[112] и «Вояджер-2»[113], которые пересекли эту границу в декабре 2004 года и августе 2007).

Ещё приблизительно через 40 а. е. солнечный ветер сталкивается с межзвёздным веществом и окончательно останавливается. Эта граница, отделяющая межзвёздную среду от вещества Солнечной системы, называется гелиопаузой[47]. По форме она похожа на пузырь, вытянутый в противоположную движению Солнца сторону. Область пространства, ограниченная гелиопаузой, называется гелиосферой.

Согласно данным аппаратов «Вояджер», ударная волна с южной стороны оказалась ближе, чем с северной (73 и 85 астрономических единиц соответственно). Точные причины этого пока неизвестны; согласно первым предположениям, асимметричность гелиопаузы может быть вызвана действием сверхслабых магнитных полей в межзвёздном пространстве Галактики[113].

По другую сторону гелиопаузы, на расстоянии порядка 230 а. е. от Солнца, вдоль головной ударной волны (bow shock) происходит торможение с космических скоростей налетающего на Солнечную систему межзвёздного вещества[114].

Ни один космический корабль ещё не вышел из гелиопаузы, таким образом, невозможно знать наверняка условия в местном межзвёздном облаке. Ожидается, что «Вояджеры» пройдут гелиопаузу приблизительно между 2014 и 2027 годами и передадут ценные данные относительно уровней излучения и солнечного ветра[115]. Недостаточно ясно, насколько хорошо гелиосфера защищает Солнечную систему от космических лучей. Команда, финансируемая НАСА, разработала концепцию миссии «Vision Mission» — посылки зонда к границе гелиосферы[116][117].

В июне 2011 года было объявлено, что благодаря исследованиям «Вояджеров» стало известно, что магнитное поле на границе Солнечной системы имеет структуру, похожую на пену. Это происходит из-за того, что намагниченные материя и мелкие космические объекты образуют местные магнитные поля, которые можно сравнить с пузырями[118].

Облако Оорта[править | править вики-текст]

Основная статья: Облако Оорта



Рисунок, иллюстрирующий предполагаемый вид облака Оорта

Гипотетическое облако Оорта — сферическое облако ледяных объектов (вплоть до триллиона), служащее источником долгопериодических комет. Предполагаемое расстояние до внешних границ облака Оорта от Солнца составляетот 50 000 а. е. (приблизительно 1 световой год) до 100 000 а. е. (1,87 св. лет). Полагают, что составляющие облако объекты сформировались около Солнца и были рассеяны далеко в космос гравитационными эффектами планет-гигантов на раннем этапе развития Солнечной системы. Объекты облака Оорта перемещаются очень медленно и могут испытывать взаимодействия, нехарактерные для внутренних объектов системы: редкие столкновения друг с другом, гравитационное воздействие проходящей рядом звезды, действие галактических приливных сил[119][120].

Седна[править | править вики-текст]

Основная статья: (90377) Седна

Седна (525,86 а. е. в среднем) — большой, подобный Плутону, красноватый объект с гигантской, чрезвычайно вытянутой эллиптической орбитой, от приблизительно 76 а. е. в перигелии до 975 а. е. в афелии и периодом в 12 050 лет. Майкл Браун, который открыл Седну в 2003 году, утверждает, что она не может быть частью рассеянного диска или пояса Койпера, поскольку её перигелий слишком далёк, чтобы объясняться воздействием миграции Нептуна. Он и другие астрономы полагают, что этот объект является первым обнаруженным в полностью новой популяции, которая также может включать объект 2000 CR105 с перигелием 45 а. е., афелием 415 а. е. и орбитальным периодом 3420 лет[121]. Браун называет эту популяцию «внутренним облаком Оорта», поскольку она, вероятно, сформировалась посредством процесса, подобного процессу формирования облака Оорта, хотя и намного ближе к Солнцу[122]. Седна, весьма вероятно, могла бы быть признана карликовой планетой, если бы достоверно была определена её форма.

Пограничные области[править | править вики-текст]

См. также: Вулканоиды и Немезида (звезда)

Большая часть нашей Солнечной системы всё ещё неизвестна. По оценкам, гравитационное поле Солнца преобладает над гравитационными силами окружающих звёзд на расстоянии приблизительно двух световых лет (125 000 а. е.). В сравнении, нижние оценки радиуса облака Оорта не размещают его дальше 50 000 а. е.[123]Несмотря на открытия таких объектов как Седна, область между поясом Койпера и облаком Оорта радиусом в десятки тысяч а. е. и тем более само облако Оорта и то, что может находиться за ним, всё ещё практически не исследованы. Также продолжается изучение области между Меркурием и Солнцем[124].

Сравнительная таблица основных параметров планет и карликовых планет[править | править вики-текст]

Все параметры ниже, кроме плотности, расстояния от Солнца и спутников, указаны в отношении к аналогичным данным Земли.

Планета (карликовая планета)

Диаметр, относительно

Масса, относительно

Орбитальный радиус, а. е.

Период обращения, земных лет

Сутки, относительно

Плотность, кг/м³

Спутники

Меркурий

0,382

0,06

0,38

0,241

58,6

5427

нет

Венера

0,949

0,82

0,72

0,615

243[125]

5243

нет

Земля[126]

1,0

1,0

1,0

1,0

1,0

5515

1

Марс

0,53

0,11

1,52

1,88

1,03

3933

2

Церера

0,074

0,000013

2,76

4,6

0,46

2000

нет

Юпитер

11,2

318

5,20

11,86

0,414

1326

67

Сатурн

9,41

95

9,54

29,46

0,426

687

62

Уран

3,98

14,6

19,22

84,01

0,718[125]

1270

27

Нептун

3,81

17,2

30,06

164,79

0,671

1638

14

Плутон

0,098

0,0017

39,2

248,09

6,3

2203

5

Хаумеа

0,032

0,00066

42,1

281,1

0,03

1900

2

Макемаке

0,033

0,00065

45,2

306,28

1,9

1700

нет

Эрида

0,1

0,0019

68,03

561,34

1,1

2400

1



Расстояния планет от Солнца: 1) Меркурий 2) Венера 3) Земля 4) Марс — Пояс астероидов — 5) Юпитер 6) Сатурн 7) Уран 8) Нептун — Пояс Койпера



Приблизительное соотношение размеров планет и Солнца. Межпланетные расстояния не в масштабе. Солнце изображено слева.

Формирование и эволюция Солнечной системы[править | править вики-текст]

Основная статья: Формирование и эволюция Солнечной системы



Жизненный цикл Солнца. Масштаб и цвета условны. Временная шкала в миллиардах лет (приблизительно)
1   ...   56   57   58   59   60   61   62   63   64



написать администратору сайта