1. Физиология как наука
Скачать 2.32 Mb.
|
Кальций опосредованно активирует образование в эндотелии простациклина (PG-I 2 ) и NO (оксида азота), которые, проникая в гладкомышечные клетки кровеносных микрососудов, вызывают их расслабление. Это приводит к расширению кровеносных сосудов, что также сопровождается увеличением межклеточных щелей в эндотелии. Наличие увеличенных межклеточных щелей в сосудистом эндотелии и снижении адгезии с эпителиоцитами позволяет погрузиться в них псевдоподиям нейтрофила, которые, выделяя протеазы, осуществляют локальный протеолиз ба-зальной мембраны. Эти процессы позволяют нейтрофилу выйти в межклеточное пространство ткани, достигнуть за счет хемотаксиса места действия и превратиться в фагоцит. 2. Прикрепление чужеродного объекта к фагоциту. За счет адгезивных белков фагоцита и микроорганизмов возникает прикрепление объекта к фагоциту. Быстрее процесс прилипания идет, если предварительно произошла опсонизация антигена компонентом СЗ системы комплимента или антителами, так как мембраны фагоцитов имеют соответствующие мембранные рецепторы (F c , C3 b ), которые опознают объект как чужой. 3. Поглощение. После связывания объекта фагоцит за счет псевдоподии окружает объект, и он как бы погружается в цитозоль в виде образовавшейся фагосомы. 4. Лизис. Фагосома сливается с лизосомой, образуя фаголизосому. Лизосомальные ферменты активны только в кислой среде. В лизосоме имеются протеазы, пептидазы, оксидазы, нуклеазы, липазы, способные разрушать оболочки микробов Кроме того, фагоциты продуцируют реактивные метаболиты кислорода (перекись водорода, пероксидаиионы, гид-роксилрадикалы). Перечисленные выше факторы повреждают мембраны бактерий и тем самым обеспечивают оптимальные условия Для действия лизосомальных ферментов. В фаголизосоме происходит лизис чужеродных объектов. Если объект велик для фагоцитоза (паразиты), то в действие вступают эозинофилы и базофилы. Эозинофилы спо- собны образовывать цитотоксический белок дефенсин, который способен вызывать в мембране объектов образование дополнительных ионных каналов, которые нарушают ионную асимметрию и, как следствие, осмотический «шок» и гибель объекта. Базофилы (тучные клетки в тканях) выделяют хемотаксические факторы для эозинофилов. Эти хемотаксические факторы стимулируют выход эозинофилов из кровеносного русла в место действия, а также при дегрануляции выделяют гистамин, который, как было сказано выше, существенно изменяет проницаемость сосудистой стенки для жидкости. Секреторная функция гранулоцитов и клеток макро-фагально-моноцитарной системы. Нейтрофилы секретируют цитотоксические факторы, ферменты, активирующие биологически активные системы (калликреин-кининовая, свертывающая и др.), БАВ, активирующие предшественники медиаторов воспаления. Эозинофилы выделяют цитотоксический белок - дефенсин, лейкотриен С4, гистаминазу. Они могут продуцировать реактивные метаболиты кислорода (перекись водорода, пероксиданионы, гидроксилрадикалы), которые способны разрушать оболочку паразитов. Базофилы выделяют гистамин, факторы хемотаксиса нейтрофилов и эозинофилов, анафилаксии. Макрофаги способны секретировать большое количество цитокинов (факторы пролиферации и дифференцировки -ГМКСФ и др., различные цитотоксические факторы - ФНО и пр., интерлейкин-1 и др.). Они выделяют ферменты, компоненты системы комплимента, ингибиторы протеаз, реактогенные метаболиты кислорода, факторы хемотаксиса для нейтрофилов, простагландины, лейкотриены. Мембранные рецепторы. Макрофаги имеет рецепторы к Fc-фрагменту иммуноглобулинов классов А, М, Е, подкласса G (Fc-гамма-R 1 , Fc- гамма-R 3 ), а также рецепторы (CR 1 ) к компонентам системы комплимента. Моноцит (макрофаг) имеет на своей поверхности CD64, который является маркером данной клетки. Нейтрофилы имеют рецепторы (Fc-гамма-R 2 , Fc-гамма-R3) к Fc-фрагменту иммуноглобулинов G. Это обеспечивает их участие в антителозависимых цитотоксических реакциях и CR 1 и CR3 к компонентам комплимента. Эозинофилы имеют рецепторы к Fc-фрагменту иммуноглобулинов Е и G, а также рецепторы CR 1 к активирован- ному СЗ. Взаимодействие с последним активирует в клетке образование реактивных метаболитов кислорода (перекись водорода, пероксиданионы, гидроксилрадикалы). Базофилы имеет высокоактивные рецепторы к Fc-фрагменту иммуноглобулинов. Естественные киллеры. К ним относятся NK-клетки. Это большие зернистые лимфоциты. Они элиминируют опухолевые и инфицирован- ные клетки. Они не имеют основных маркеров лимфоцитов (поэтому их называют нулевыми лимфоцитами). Способны экспрессировать CD2, CD56, CD 16 антигена (рецептор Fc-фрагментов антител). У них на мембране отсутствует Т-антигенраспознающий рецептор. NK-клетки способны за счет специального киллинграспознающего мембранного рецептора (КАР) самостоятельно распознать «свое-чужое», фиксировать объект за счет адгезивных белков (Ig-подобных белков, β 2 -интегринов) и уничтожить клетку за счет индукции в ее мембрану при непосредственном контакте специального белка - перфорина. Неуправляемый канал, образованный этим белком, заполняется межклеточной жидкостью. Мембрана утрачивает свою избирательную проницаемость для веществ, прежде всего ионов, утрачивается ионная асимметрия, развивается явление, получившее название «осмотический шок». Это в конце концов вызывает гибель данных биологических объектов. Кроме того, существуют просто киллерные клетки (К-клетки), которые способны осуществлять антителозависимый киллинг и ЛАК-клетки, проедставляющие собой лейкоциты, активированные интерлейкином-2. NK-клетки и К-клетки способны осуществлять киллинг без предварительной активации (сенсибилизации). Естественные («антигеннезависимые», «неспецифические» антитела). Естественные антигены составляют до 7% от общего количества иммуноглобулинов. Эти антитела низкоспецифичны и способны перекрестно реагировать с широким спектром антигенов. Вызывают склеивание микробов с последующим их разрушением в присутствии системы комплимента. Стимулируют фагоцитарные реакции за счет опсонизции антигенов: Особенности врожденного (естественного) иммунитета 1. Отсутствие специфичности врожденной ответной реакции. 2. Участие в ответной реакции всех факторов врожденного иммунитета. 3. Стереотипность реализации всех факторов врожденного иммунитета. 4. Отсутствие специфики реагирования на разные антигены. 5. Неспособность механизмов врожденного иммунитета изменяться в соответствии с особенностями кон- кретных антигенов. 6. По завершении ответа не остается иммунологической памяти. Г ЛАВНЫЙ КОМПЛЕКС ГИСТОСОВМЕСТИМОСТИ В него входят антигенпредставляющие молекулы главного комплекса гистосовместимости (HLA I, HLA II) и мо- лекула CD1 (а, b, с, d, e). Молекулы HLA разделяются на классы: HLA I (А, В, С, Е, F, G) и HLAII (DR, DP, DQ). HLAI. Экспрессированы на всех клетках и позволяют распознать в организме аутологичность клеток. HLA II. Имеются только у клеток иммунной системы: В- и Т-лимфоцитах, макрофагах и др. Главный комплекс гистосовместимости I (ГКС-1). Экспрессированы на всех клетках и позволяют распознать в организме аутологичность клеток. Его основу составляют антигены HLA I и белки - шапероны. Молекула HLA I состоит из α-цепи, в которой имеются три домена, и β 2 -микроглобулина. К шаперонам относятся кальнесин, кальретикулин, тапазин, Ii-цепь и др. Домены α 1 и α 2 α-цепи формируют желобок для загрузки распознаваемого антигена (или его пептидных фрагментов). Шапероны ответственны за правильность укладки распознаваемого антигена (или его пептидных фрагментов). Главный комплекс гистосовместимости II (ГКС-II). ГКС-II имеется только у клеток иммунной системы: В-и Т-лимфоцитах, макрофагах и др. Его основу составляют антигены HLA II и белки - шапероны. Молекула HLA II состоит из двух димеров α и β, которые формируют желобок для загрузки распознаваемого антигена (или его пептидных фрагментов). Шапероны ответственны за правильность укладки распознаваемого антигена (или его пептидных фрагментов). Гены HLA находятся в шестой хромосоме. Около 180 генов с более чем 500 аллелями кодируют синтез молекул HLA I, более 20 генов и 300 аллелей кодируют синтез HLA II. Наличие такого числа аллелей позволяет каждому человеку иметь свой специфический комплекс гистосовместимости класса I и II (фенотип). Наличие специфического комплекса гистосовместимости обеспечивает возможность контроля за собственными и чужеродными антигенами по принципу «свой»-«чужой». Кроме того, антигенпрезентующие клетки имеют на мембране CD1 молекулы, которые, по аналогии с HLA I, со- стоят из из α-цепи и β 2 -микроглобулина, которые обеспечивают укладку небелковых антигенов (фосфолипидов, липополисахаридов) и их презентацию. Распознавание антигена. Т-лимфоциты не способны непосредственно взаимодействовать и распознать чужеродный антиген. Способностью презентовать (представлять) Т-лимфоцит чужеродный антиген обладают дендритные клетки, макрофаги, В-лимфоциты. Антигенпрезентующие клетки. К ним относятся дендритные клетки 1 и 2 типов, макрофаги, В-лимфоциты. Антигенпрезентующие клетки способны осуществить: - захват чужеродного антигена; - переработку чужеродного антигена (процессинг-осуществляется путем расщепления ферментативным путем чужеродного антигена на экзогенные пептиды, имеющие антигенную детерминанту); - формирование комплексов, наколовшихся экзогенных пептидов, с собственными молекулами главного комплекса гистосовместимости I и II; - транспортировку образовавшихся комплексов на поверхность антигенпрезентующих клеток; - доставку комплексов в периферические органы иммунной системы; - презентацию комплексов Т-лимфоцитам; - взаимодействие комплексов с Т-антигенраспозна-ющим рецептором. Причем Т-хелперы могут распознать экзогенные пептиды чужеродного антигена, если они образуют комплекс с молекулами гистосовместимости класса II. Т-киллеры распознают их, если они образовали комплекс с молекулами гистосовместимости класса I. Стабилизация отношений Т-лимфоцитов с антигенпрезентующими клетками осуществляется за счет костимулирующих сигналов, которые возникают при взаимодействии адгезивных белков мембран: LFA-1 у Т- лимфоцитов и ICAM-1 у антигенпрезентующих клеток, а также образования других пар костимулирующих молекул CD28-CD80, CD40-CD40, CD86-CD154 соответственно. При отсутствии этих контактов может наступить анергия Т-лимфоцитов или их апоптоз. Т-супрессоры. Наличие специальных клеток, Т-супрессоров, которые способны подавлять образование антител, ставится под со- мнение. По-видимому, супрессорную (подавляющую) функцию способны выполнять и CD8, и CD4 лимфоциты. Имеются сведения, что существуют специальные Т-клетки, которые выполняют только регуляторную функцию (Т-регуляторы 1 типа), однако в настоящее время их функциональное назначение только начинает изучаться. Т-клетки иммунной памяти. Часть клона Т-клеток остается после первичного иммунного ответа, она длительно сохраняет информацию о дей- ствовавшем антигене. При повторном попадании антигена формируют вторичный иммунный ответ. Существуют CD4 и CD8 клетки иммунной памяти, обеспечивающие длительное хранение информации о действовавшем антигене. 46. Эритроциты… Эритроциты - красные кровяные тельца. Имеют форму двояковогнутого диска. Функции эритроцитов: 1. Дыхательная - транспорт кислорода и участие в транспорте углекислого газа. 2. Адсорбция и транспорт питательных веществ. 3. Адсорбция и транспорт токсинов. 4. Регуляция ионного состава плазмы крови. 5. Формирует реологические характеристики крови/вязкость и т.д./ Эритрон Эритрон - часть системы крови, обеспечивающая поддержание постоянства количества эритроцитов. В эритрон входят: а) эритороидный ряд красного косного мозга б) ретикулоциты и эритроциты в) органы разрушения эритроцитов г) продукты распада эритроцитов д) Эритропоэтины /вырабатываются почками, печенью, а также продукты распада эритроцитов/ Эритрокинетика Эритрокинетика - это процессы, направленные на образование и разрушение эритроцитов. Продолжительность жизни эритроцитов - 120 дней. Регуляция эритрокинетики осуществляется преимущественно гуморальным путем. Стимуляторы образования и созревания эритроцитов (эритропоэза) - эритропоэтины (специфический стимулятор), глюкокортикоиды. Противоположным действием на эритропоэз влияют женские половые гормоны - эстрогены. Клинико-физиологическая оценка эритроцитов Количество эритроцитов: у мужчин 4,5-5,0 млн. в 1 мм 3 , 4,5-5,0*10 12 /л; у женщин 4,0-4,5 млн. в 1 мм 3 ,4,0- 4,5*10 12 /л. Эритроцитоз - увеличение содержания эритроцитов. Эритропения – снижение содержания эритроцитов, это состояние может еще обозначатся термином "анемия". Возможны истинные и ложные изменения количества эритроцитов. Истинные - изменения во всем организме. Ложные - изменения за счет изменения объема плазмы крови. Размеры эритроцитов: 6-8 микрон - нормоцит; менее 6 микрон - микроцит; 8-10 микрон - макроцит; более 10 микрон - мегалоцит. Гемоглобин Кровянной пигмент/дающий окраску/, хромопротеид/класс окрашенных белков/. Молекулярная масса 68000. Состоит из 4 гемов/4 пирольных конца и 2 атома Fe/ и 1 молекулы глобина Виды гемоглобина: 1. Гемоглобин А (Нв А) - гамоглобин взрослого 2. Гемоглобин F (фетальный, Нв F) - гемоглобин плода, заменяется в течении первого года на Нв А. 3. Гемоглобин Р (примитивный, Нв Р) - обнаруживается в первые месяцы эмбриональной жизни. 4. Патологические виды гемоглобина, например - (Нв S). Нв S наблюдается при серповидной анемии. Функции гемоглобина: 1. Транспорт дыхательных газов. В основном это транспорт кислорода. Углекислый газ транспортируется с Нв очень незначительная часть. 2. Гемоглобин принимает участие в поддержании рН на постоянном уровне - буферная система гемоглобина. Соединения гемоглобина: 1. Оксигемоглобин - соединение Нв с кислородом. 2. Карбогемоглобин - соединение Нв с углекислым газом (СО 2 ). 3. Карбоксигемоголобин - соединение Нв с угарным газом (СО). 4. Метгемоглобин - соединение Нв с кислородом. Это соединение образуется в присутствии сильных окислителей и при этом железо (Fе) изменяет свою валентность - становится 3-х валентным. Клинико-физиологическая оценка содержания гемоглобина Содержание гемоглобина: у мужчин 13-16 мг% (130-160 г/л), у женщин - 12-14 мг% (120-140 г/л). Гиперхромемия - увеличение содержания гемоглобина. Гипохромемия - снижение содержания гемоглобина/анемия Цветовой показатель Цветовой показатель (ЦП) - отражает относительное насыщение эритроцитов гемоглобином. Найденное количество гемоглобина отнесенное к количеству эритроцитов, разделить на отношение количество гемоглобина в норме отнесенное к количеству эритроцитов в норме. В норме ЦП составляет от 0,8 до 1,0 - эти эритроциты называют нормохромными. Если ЦП больше 1,0, то это состояние называют гиперхромией , а а эритроциты гиперхромными, а если ЦП меньше 0,8 - гипохромией, а эритроциты - гипохромными. Свойства эритроцитов Гемолиз - это разрушение оболочки эритроцита и выход его содержимого в плазму. Факторы, вызывающие гемолиз: 1. Физические - сильное нагревание, замораживание, встряхивание ампул с кровью. 2. Химические - кислоты, щелочи- коагулируют белки мембраны, эфир, хлороформ, бензол. нитриты, анилин, сапонины- жирорастворители, действуют на фосфолипиды мембраны. 3. Физико-химические - прежде всего изменение осмотического давления. 4. Биологические – старение эритроцитов, нарушение обмена белков и/или жиров, приводящие к нарушению структуры мембран, иммунный гемолиз/групповая несовместимость крови, аутоантитела к эритроцитам/, яды змей, токсины микробов (гемолитический стрептококк). Эти факторы снижают резистентность /устойчивость/ оболочки эритроцитов к разрушению. Виды гемолиза Внутриклеточный гемолиз- стареющие эритроциты разрушаются в ретикулоэндотелиальной ткани селезенки, печени, фагоцитируются макрофагами. Внутрисосудистый гемолиз- эритроциты способны гемолизироваться /разрушаться/, находясь в циркулирующей крови. Небольшая часть разрушается так даже в норме. Различные факторы включают один из …… или оба вида гемолиза. Для оценки устойчивости мембран эритроцитов проводят определение in vitro: Осмотическая резистентность эритроцитов Уменьшение осмотического давления крови приводит в начале к набуханию, а затем к разрушению эритроцитов - осмотический гемолиз. Мерой осмотической резистентности эритроцитов (ОРЭ) является концентрация NaCI. Отмечают концентрацию NaCI, предшествующую началу гемолиза - min ОРЭ и концентрацию, предшествующую окончанию гемолиза - max ОРЭ. В норме min ОРЭ составляет от 0,46 до 0,48% NaCI ,а max ОРЭ - от 0,32 до 0,34% NaCI. Нередко определяют кислотную резистентность эритроцитов. В основе также лежит принцип разведения. Скорость оседания эритроцитов Если предохранить кровь от свертывания, то при ее стоянии эритроциты оседают. Факторы, влияющие на величину скорости оседания эритроцитов (СОЭ): 1. Белки плазмы крови - при увеличении в плазме крови концентрации белков, особенно грубодисперсных, СОЭ увеличивается. 2. Количество эритроцитов - увеличение количества эритроцитов и приводит к замедлению СОЭ. Возможно физиологическое увеличение СОЭ (при беременности, тяжелой мышечной работе) и патологическое - как правило при патологиях воспалительного характера. |