Главная страница

1. Физиология как наука


Скачать 2.32 Mb.
Название1. Физиология как наука
Дата10.09.2019
Размер2.32 Mb.
Формат файлаpdf
Имя файлаnormalnaya_fiziologia_ekz.pdf
ТипДокументы
#86494
страница13 из 33
1   ...   9   10   11   12   13   14   15   16   ...   33
Кальций опосредованно активирует образование в эндотелии простациклина (PG-I
2
) и NO (оксида азота), которые, проникая в гладкомышечные клетки кровеносных микрососудов, вызывают их расслабление. Это приводит к расширению кровеносных сосудов, что также сопровождается увеличением межклеточных щелей в эндотелии.
Наличие увеличенных межклеточных щелей в сосудистом эндотелии и снижении адгезии с эпителиоцитами позволяет погрузиться в них псевдоподиям нейтрофила, которые, выделяя протеазы, осуществляют локальный протеолиз ба-зальной мембраны. Эти процессы позволяют нейтрофилу выйти в межклеточное пространство ткани, достигнуть за счет хемотаксиса места действия и превратиться в фагоцит.
2. Прикрепление чужеродного объекта к фагоциту.
За счет адгезивных белков фагоцита и микроорганизмов возникает прикрепление объекта к фагоциту. Быстрее процесс прилипания идет, если предварительно произошла опсонизация антигена компонентом СЗ системы комплимента или антителами, так как мембраны фагоцитов имеют соответствующие мембранные рецепторы (F
c
,
C3
b
), которые опознают объект как чужой.
3. Поглощение.
После связывания объекта фагоцит за счет псевдоподии окружает объект, и он как бы погружается в цитозоль в виде образовавшейся фагосомы.
4. Лизис.
Фагосома сливается с лизосомой, образуя фаголизосому. Лизосомальные ферменты активны только в кислой среде.
В лизосоме имеются протеазы, пептидазы, оксидазы, нуклеазы, липазы, способные разрушать оболочки микробов
Кроме того, фагоциты продуцируют реактивные метаболиты кислорода (перекись водорода, пероксидаиионы, гид-роксилрадикалы).
Перечисленные выше факторы повреждают мембраны бактерий и тем самым обеспечивают оптимальные условия Для действия лизосомальных ферментов. В фаголизосоме происходит лизис чужеродных объектов.
Если объект велик для фагоцитоза (паразиты), то в действие вступают эозинофилы и базофилы. Эозинофилы спо- собны образовывать цитотоксический белок дефенсин, который способен вызывать в мембране объектов образование дополнительных ионных каналов, которые нарушают ионную асимметрию и, как следствие, осмотический «шок» и гибель объекта.
Базофилы (тучные клетки в тканях) выделяют хемотаксические факторы для эозинофилов. Эти хемотаксические факторы стимулируют выход эозинофилов из кровеносного русла в место действия, а также при дегрануляции выделяют гистамин, который, как было сказано выше, существенно изменяет проницаемость сосудистой стенки для жидкости.
Секреторная функция гранулоцитов и клеток макро-фагально-моноцитарной системы.
Нейтрофилы секретируют цитотоксические факторы, ферменты, активирующие биологически активные системы
(калликреин-кининовая, свертывающая и др.), БАВ, активирующие предшественники медиаторов воспаления.
Эозинофилы выделяют цитотоксический белок - дефенсин, лейкотриен С4, гистаминазу.
Они могут продуцировать реактивные метаболиты кислорода (перекись водорода, пероксиданионы, гидроксилрадикалы), которые способны разрушать оболочку паразитов.
Базофилы выделяют гистамин, факторы хемотаксиса нейтрофилов и эозинофилов, анафилаксии.
Макрофаги способны секретировать большое количество цитокинов (факторы пролиферации и дифференцировки
-ГМКСФ и др., различные цитотоксические факторы - ФНО и пр., интерлейкин-1 и др.).
Они выделяют ферменты, компоненты системы комплимента, ингибиторы протеаз, реактогенные метаболиты кислорода, факторы хемотаксиса для нейтрофилов, простагландины, лейкотриены.

Мембранные рецепторы.
Макрофаги имеет рецепторы к Fc-фрагменту иммуноглобулинов классов А, М, Е, подкласса G (Fc-гамма-R
1
, Fc- гамма-R
3
), а также рецепторы (CR
1
) к компонентам системы комплимента.
Моноцит (макрофаг) имеет на своей поверхности CD64, который является маркером данной клетки.
Нейтрофилы имеют рецепторы (Fc-гамма-R
2
, Fc-гамма-R3) к Fc-фрагменту иммуноглобулинов G. Это обеспечивает их участие в антителозависимых цитотоксических реакциях и CR
1
и CR3 к компонентам комплимента.
Эозинофилы имеют рецепторы к Fc-фрагменту иммуноглобулинов Е и G, а также рецепторы CR
1
к активирован- ному СЗ. Взаимодействие с последним активирует в клетке образование реактивных метаболитов кислорода
(перекись водорода, пероксиданионы, гидроксилрадикалы).
Базофилы имеет высокоактивные рецепторы к Fc-фрагменту иммуноглобулинов.
Естественные киллеры.
К ним относятся NK-клетки. Это большие зернистые лимфоциты. Они элиминируют опухолевые и инфицирован- ные клетки.
Они не имеют основных маркеров лимфоцитов (поэтому их называют нулевыми лимфоцитами). Способны экспрессировать CD2, CD56, CD 16 антигена (рецептор Fc-фрагментов антител).
У них на мембране отсутствует Т-антигенраспознающий рецептор.
NK-клетки способны за счет специального киллинграспознающего мембранного рецептора (КАР) самостоятельно распознать «свое-чужое», фиксировать объект за счет адгезивных белков (Ig-подобных белков,
β
2
-интегринов) и уничтожить клетку за счет индукции в ее мембрану при непосредственном контакте специального белка - перфорина.
Неуправляемый канал, образованный этим белком, заполняется межклеточной жидкостью. Мембрана утрачивает свою избирательную проницаемость для веществ, прежде всего ионов, утрачивается ионная асимметрия, развивается явление, получившее название «осмотический шок».
Это в конце концов вызывает гибель данных биологических объектов.
Кроме того, существуют просто киллерные клетки (К-клетки), которые способны осуществлять антителозависимый киллинг и ЛАК-клетки, проедставляющие собой лейкоциты, активированные интерлейкином-2.
NK-клетки и К-клетки способны осуществлять киллинг без предварительной активации (сенсибилизации).
Естественные («антигеннезависимые», «неспецифические» антитела).
Естественные антигены составляют до 7% от общего количества иммуноглобулинов.
Эти антитела низкоспецифичны и способны перекрестно реагировать с широким спектром антигенов.
Вызывают склеивание микробов с последующим их разрушением в присутствии системы комплимента.
Стимулируют фагоцитарные реакции за счет опсонизции антигенов:
Особенности врожденного (естественного) иммунитета
1. Отсутствие специфичности врожденной ответной реакции.
2. Участие в ответной реакции всех факторов врожденного иммунитета.
3. Стереотипность реализации всех факторов врожденного иммунитета.
4. Отсутствие специфики реагирования на разные антигены.
5. Неспособность механизмов врожденного иммунитета изменяться в соответствии с особенностями кон- кретных антигенов.
6. По завершении ответа не остается иммунологической памяти.
Г
ЛАВНЫЙ КОМПЛЕКС ГИСТОСОВМЕСТИМОСТИ
В него входят антигенпредставляющие молекулы главного комплекса гистосовместимости (HLA I, HLA II) и мо- лекула CD1 (а, b, с, d, e).
Молекулы HLA разделяются на классы: HLA I (А, В, С, Е, F, G) и HLAII (DR, DP, DQ).
HLAI.
Экспрессированы на всех клетках и позволяют распознать в организме аутологичность клеток.
HLA II.
Имеются только у клеток иммунной системы: В- и Т-лимфоцитах, макрофагах и др.
Главный комплекс гистосовместимости I (ГКС-1).
Экспрессированы на всех клетках и позволяют распознать в организме аутологичность клеток.
Его основу составляют антигены HLA I и белки - шапероны.
Молекула HLA I состоит из α-цепи, в которой имеются три домена, и β
2
-микроглобулина.
К шаперонам относятся кальнесин, кальретикулин, тапазин, Ii-цепь и др.
Домены α
1
и α
2
α-цепи формируют желобок для загрузки распознаваемого антигена (или его пептидных фрагментов).
Шапероны ответственны за правильность укладки распознаваемого антигена (или его пептидных фрагментов).
Главный комплекс гистосовместимости II (ГКС-II).
ГКС-II имеется только у клеток иммунной системы: В-и Т-лимфоцитах, макрофагах и др.
Его основу составляют антигены HLA II и белки - шапероны.
Молекула HLA II состоит из двух димеров α и β, которые формируют желобок для загрузки распознаваемого антигена (или его пептидных фрагментов).

Шапероны ответственны за правильность укладки распознаваемого антигена (или его пептидных фрагментов).
Гены HLA находятся в шестой хромосоме. Около 180 генов с более чем 500 аллелями кодируют синтез молекул
HLA I, более 20 генов и 300 аллелей кодируют синтез HLA II.
Наличие такого числа аллелей позволяет каждому человеку иметь свой специфический комплекс гистосовместимости класса I и II (фенотип).
Наличие специфического комплекса гистосовместимости обеспечивает возможность контроля за собственными и чужеродными антигенами по принципу «свой»-«чужой».
Кроме того, антигенпрезентующие клетки имеют на мембране CD1 молекулы, которые, по аналогии с HLA I, со- стоят из из α-цепи и β
2
-микроглобулина, которые обеспечивают укладку небелковых антигенов (фосфолипидов, липополисахаридов) и их презентацию.
Распознавание антигена.
Т-лимфоциты не способны непосредственно взаимодействовать и распознать чужеродный антиген.
Способностью презентовать (представлять) Т-лимфоцит чужеродный антиген обладают дендритные клетки, макрофаги, В-лимфоциты.
Антигенпрезентующие клетки.
К ним относятся дендритные клетки 1 и 2 типов, макрофаги, В-лимфоциты.
Антигенпрезентующие клетки способны осуществить:
- захват чужеродного антигена;
- переработку чужеродного антигена (процессинг-осуществляется путем расщепления ферментативным путем чужеродного антигена на экзогенные пептиды, имеющие антигенную детерминанту);
- формирование комплексов, наколовшихся экзогенных пептидов, с собственными молекулами главного комплекса гистосовместимости I и II;
- транспортировку образовавшихся комплексов на поверхность антигенпрезентующих клеток;
- доставку комплексов в периферические органы иммунной системы;
- презентацию комплексов Т-лимфоцитам;
- взаимодействие комплексов с Т-антигенраспозна-ющим рецептором.
Причем Т-хелперы могут распознать экзогенные пептиды чужеродного антигена, если они образуют комплекс с молекулами гистосовместимости класса II. Т-киллеры распознают их, если они образовали комплекс с молекулами гистосовместимости класса I.
Стабилизация отношений Т-лимфоцитов с антигенпрезентующими клетками осуществляется за счет костимулирующих сигналов, которые возникают при взаимодействии адгезивных белков мембран: LFA-1 у Т- лимфоцитов и ICAM-1 у антигенпрезентующих клеток, а также образования других пар костимулирующих молекул CD28-CD80, CD40-CD40, CD86-CD154 соответственно.
При отсутствии этих контактов может наступить анергия Т-лимфоцитов или их апоптоз.
Т-супрессоры.
Наличие специальных клеток, Т-супрессоров, которые способны подавлять образование антител, ставится под со- мнение.
По-видимому, супрессорную (подавляющую) функцию способны выполнять и CD8, и CD4 лимфоциты.
Имеются сведения, что существуют специальные Т-клетки, которые выполняют только регуляторную функцию
(Т-регуляторы 1 типа), однако в настоящее время их функциональное назначение только начинает изучаться.
Т-клетки иммунной памяти.
Часть клона Т-клеток остается после первичного иммунного ответа, она длительно сохраняет информацию о дей- ствовавшем антигене.
При повторном попадании антигена формируют вторичный иммунный ответ. Существуют CD4 и CD8 клетки иммунной памяти, обеспечивающие длительное хранение информации о действовавшем антигене.
46. Эритроциты…
Эритроциты - красные кровяные тельца. Имеют форму двояковогнутого диска.
Функции эритроцитов:
1. Дыхательная - транспорт кислорода и участие в транспорте углекислого газа.
2. Адсорбция и транспорт питательных веществ.
3. Адсорбция и транспорт токсинов.
4. Регуляция ионного состава плазмы крови.
5. Формирует реологические характеристики крови/вязкость и т.д./
Эритрон
Эритрон - часть системы крови, обеспечивающая поддержание постоянства количества эритроцитов. В эритрон входят: а) эритороидный ряд красного косного мозга б) ретикулоциты и эритроциты в) органы разрушения эритроцитов г) продукты распада эритроцитов д) Эритропоэтины /вырабатываются почками, печенью, а также продукты распада эритроцитов/

Эритрокинетика
Эритрокинетика - это процессы, направленные на образование и разрушение эритроцитов. Продолжительность жизни эритроцитов - 120 дней.
Регуляция эритрокинетики осуществляется преимущественно гуморальным путем. Стимуляторы образования и созревания эритроцитов (эритропоэза) - эритропоэтины (специфический стимулятор), глюкокортикоиды.
Противоположным действием на эритропоэз влияют женские половые гормоны - эстрогены.
Клинико-физиологическая оценка эритроцитов
Количество эритроцитов: у мужчин 4,5-5,0 млн. в 1 мм
3
,
4,5-5,0*10 12
/л; у женщин 4,0-4,5 млн. в 1 мм
3
,4,0-
4,5*10 12
/л.
Эритроцитоз - увеличение содержания эритроцитов. Эритропения – снижение содержания эритроцитов, это состояние может еще обозначатся термином "анемия". Возможны истинные и ложные изменения количества эритроцитов. Истинные - изменения во всем организме. Ложные - изменения за счет изменения объема плазмы крови.
Размеры эритроцитов:
6-8 микрон - нормоцит; менее 6 микрон - микроцит; 8-10 микрон - макроцит; более 10 микрон - мегалоцит.
Гемоглобин
Кровянной пигмент/дающий окраску/, хромопротеид/класс окрашенных белков/. Молекулярная масса 68000.
Состоит из 4 гемов/4 пирольных конца и 2 атома Fe/ и 1 молекулы глобина
Виды гемоглобина:
1. Гемоглобин А (Нв А) - гамоглобин взрослого
2. Гемоглобин F (фетальный, Нв F) - гемоглобин плода, заменяется в течении первого года на Нв А.
3. Гемоглобин Р (примитивный, Нв Р) - обнаруживается в первые месяцы эмбриональной жизни.
4. Патологические виды гемоглобина, например - (Нв S). Нв S наблюдается при серповидной анемии.
Функции гемоглобина:
1. Транспорт дыхательных газов. В основном это транспорт кислорода. Углекислый газ транспортируется с Нв очень незначительная часть.
2. Гемоглобин принимает участие в поддержании рН на постоянном уровне - буферная система гемоглобина.
Соединения гемоглобина:
1. Оксигемоглобин - соединение Нв с кислородом.
2. Карбогемоглобин - соединение Нв с углекислым газом (СО
2
).
3. Карбоксигемоголобин - соединение Нв с угарным газом (СО).
4. Метгемоглобин - соединение Нв с кислородом. Это соединение образуется в присутствии сильных окислителей и при этом железо (Fе) изменяет свою валентность - становится 3-х валентным.
Клинико-физиологическая оценка содержания гемоглобина
Содержание гемоглобина: у мужчин 13-16 мг% (130-160 г/л), у женщин - 12-14 мг% (120-140 г/л).
Гиперхромемия - увеличение содержания гемоглобина. Гипохромемия - снижение содержания гемоглобина/анемия
Цветовой показатель
Цветовой показатель (ЦП) - отражает относительное насыщение эритроцитов гемоглобином. Найденное количество гемоглобина отнесенное к количеству эритроцитов, разделить на отношение количество гемоглобина в норме отнесенное к количеству эритроцитов в норме. В норме ЦП составляет от 0,8 до 1,0 - эти эритроциты называют нормохромными. Если ЦП больше 1,0, то это состояние называют гиперхромией , а а эритроциты гиперхромными, а если ЦП меньше 0,8 - гипохромией, а эритроциты - гипохромными.
Свойства эритроцитов
Гемолиз - это разрушение оболочки эритроцита и выход его содержимого в плазму.
Факторы, вызывающие гемолиз:
1. Физические - сильное нагревание, замораживание, встряхивание ампул с кровью.
2. Химические - кислоты, щелочи- коагулируют белки мембраны, эфир, хлороформ, бензол. нитриты, анилин, сапонины- жирорастворители, действуют на фосфолипиды мембраны.
3. Физико-химические - прежде всего изменение осмотического давления.
4. Биологические – старение эритроцитов, нарушение обмена белков и/или жиров, приводящие к нарушению структуры мембран, иммунный гемолиз/групповая несовместимость крови, аутоантитела к эритроцитам/, яды змей, токсины микробов (гемолитический стрептококк).
Эти факторы снижают резистентность /устойчивость/ оболочки эритроцитов к разрушению.
Виды гемолиза
Внутриклеточный гемолиз- стареющие эритроциты разрушаются в ретикулоэндотелиальной ткани селезенки, печени, фагоцитируются макрофагами.
Внутрисосудистый гемолиз- эритроциты способны гемолизироваться /разрушаться/, находясь в циркулирующей крови. Небольшая часть разрушается так даже в норме.
Различные факторы включают один из
……
или оба вида гемолиза.
Для оценки устойчивости мембран эритроцитов проводят определение in vitro:
Осмотическая резистентность эритроцитов

Уменьшение осмотического давления крови приводит в начале к набуханию, а затем к разрушению эритроцитов - осмотический гемолиз. Мерой осмотической резистентности эритроцитов (ОРЭ) является концентрация NaCI.
Отмечают концентрацию NaCI, предшествующую началу гемолиза - min ОРЭ и концентрацию, предшествующую окончанию гемолиза - max ОРЭ. В норме min ОРЭ составляет от 0,46 до 0,48% NaCI ,а max
ОРЭ - от 0,32 до 0,34% NaCI.
Нередко определяют кислотную резистентность эритроцитов. В основе также лежит принцип разведения.
Скорость оседания эритроцитов
Если предохранить кровь от свертывания, то при ее стоянии эритроциты оседают.
Факторы, влияющие на величину скорости оседания эритроцитов (СОЭ):
1. Белки плазмы крови - при увеличении в плазме крови концентрации белков, особенно грубодисперсных, СОЭ увеличивается.
2. Количество эритроцитов - увеличение количества эритроцитов и приводит к замедлению СОЭ.
Возможно физиологическое увеличение СОЭ (при беременности, тяжелой мышечной работе) и патологическое - как правило при патологиях воспалительного характера.
1   ...   9   10   11   12   13   14   15   16   ...   33


написать администратору сайта