Главная страница

1. Физиология как наука


Скачать 2.32 Mb.
Название1. Физиология как наука
Дата10.09.2019
Размер2.32 Mb.
Формат файлаpdf
Имя файлаnormalnaya_fiziologia_ekz.pdf
ТипДокументы
#86494
страница21 из 33
1   ...   17   18   19   20   21   22   23   24   ...   33
Механизмы передвижения лимфы
В нормальных условиях в организме существует равновесие между скоростью лимфообразования и скоростью оттока лимфы от тканей. Отток лимфы из лимфатических капилляров совершается по лимфатическим сосудам, которые, сливаясь, образуют два крупных лимфатических протока, впадающих в вены. Таким образом, жидкость, вышедшая из крови в капиллярах, снова возвращается в кровяное русло, принося ряд продуктов клеточного обмена.
В перемещении лимфы определенную роль играют ритмические сокращения стенок некоторых лимфатических сосудов. В минуту происходит 8—10, а по данным отдельных исследователей, 22 сокращения. Перемещение лимфы при сокращении сосудистой стенки в связи с существованием клапанов в лимфатических сосудах происходит только в одном направлении.
Морфологически обнаружены нервные волокна, подходящие к крупным лимфатическим сосудам, а физиологическими экспериментами показано влияние симпатических нервов на лимфоток. При раздражении симпатического пограничного ствола наблюдали настолько сильное сокращение и спазм лимфатических сосудов, что движение лимфы в них прекращалось. Установлено также, что лимфоток изменяется рефлекторно при болевых раздражениях, повышении давления в каротидном синусе и при раздражении рецепторов кровеносных сосудов многих внутренних органов.
В передвижении лимфы большое значение имеют отрицательное давление в грудной полости и увеличение объема грудной клетки при вдохе. Последнее вызывает расширение грудного лимфатического протока, что облегчает движение лимфы по лимфатическим сосудам.
Движению лимфы, так же как и венозной крови, способствуют сгибания и разгибания ног во время работы и ходьбы. При мышечных сокращениях лимфатические сосуды сдавливаются, что вызывает перемещение лимфы только в одном направлении. Количество лимфы, возвращающейся в течение суток через грудной проток в кровь, составляет у человека около 1000—3000 мл.
67. Регуляция работы сердца…
Регуляция деятельности сердца
Механизм регуляции деятельности сердца:
1. Саморегуляция.
2. Гуморальная регуляция.
3. Нервная регуляция.
Задачи регуляции:
1.
Обеспечение соответствия притока и оттока крови от сердца.
2.
Обеспечение адекватного условиям внутренней и внешней среды уровня кровообращения.
Законы саморегуляции деятельности сердца:
1.
Закон Франка-Старлинга - сила сердечных сокращений пропорциональна степени растяжения миокарда в диастолу. Этот закон показывает, что сила каждого сердечного сокращения пропорциональна конечнодиастолическому объему, чем больше конечнодиастолический объем, тем сильнее сила сердечных сокращений.
2.
Закон Анрепа - сила сердечных сокращений возрастает пропорционально повышению сопротивления
(давления крови) в артериальной системе. Сердце при каждом сокращении подстраивает силу сокращения под уровень давления, который имеется в начальной части аорты и легочной артерии, чем больше это давление, тем сильнее сердечное сокращение.
3.
Закон Боудича - в определенных пределах возрастание частоты сердечных сокращений сопровождается увеличением их силы.
Существенно, что сопряжение частоты и силы сокращения определяет эффективность насосной функции сердца при различных режимах функционирования.
Таким образом, сердце само способно регулировать свою основную деятельность (сократительную, насосную) без прямого участия нейрогуморальной регуляции.
Нервная регуляция деятельности сердца.
Эффекты, наблюдаемые при нервных или гуморальных влияниях на сердечную мышцу:
1. Хронотропный (влияние на частоту сердечных сокращений).
2. Инотропный (влияние на силу сердечных сокращений).
3. Батмотропный (влияние на возбудимость сердца).
4. Дромотропный (влияние на проводимость), может быть как положительным, так и отрицательным.
Влияние вегетативной нервной системы.
1.
Парасимпатическая нервная система: а) перерезка волокон ПСНС, иннервирующих сердце - «+» хронотропный эффект (устранение тормозящего вагусного влияния, центры n.vagus исходно находятся в тонусе); б) активация ПСНС, иннервирующих сердце - «-» хроно- и батмотропный эффект, вторичный «-» инотропный эффект.

2.
Симпатическая нервная система: а) перерезка волокон СНС - нет изменений в деятельности сердца (симпатические центры, иннервирующие сердце, исходно не обладают спонтанной активностью); б) активация СНС - «+» хроно-, ино-, батмо- и дромотропный эффект.
Рефлекторная регуляция сердечной деятельности.
Особенность: изменение деятельности сердца происходит при воздействии раздражителя на любую рефлексогенную зону. Это связано с тем, что сердце, как центральный, наиболее лабильный компонент системы кровообращения, принимает участие при любой срочной адаптации.
Рефлекторная регуляция сердечной деятельности осуществляется за счет собственных рефлексов, формируемых с рефлексогенных зон сердечно-сосудистой системы, и сопряженных рефлексов, формирование которых связано с воздействием на другие, не связанные с системой кровообращения рефлексогенные зоны.
1.Основные рефлексогенные зоны сосудистого русла:
1) дуга аорты (барорецепторы);
2) каротидный синус (место разветвления общей сонной артерии на наружную и внутреннюю) (хеморецепторы);
3) устье полых вен (механорецепторы);
4) емкостные кровеносные сосуды (волюморецепторы).
2.Внесосудистые рефлексогенные зоны. Основные рецепторы рефлексогенных зон сердечнососудистой
системы:
Барорецепторы и волюморецепторы, реагирующие на изменение АД и объема крови (относятся к группе медленно адаптирующихся рецепторов, реагируют на деформацию стенки сосуда, вызванную изменением АД и/или объема крови).
Барорефлексы. Повышение АД приводит к рефлекторному урежению сердечной деятельности, снижению ударного объема (парасимпатическое влияние). Падение давления вызывает рефлекторное увеличение ЧСС и повышение УО (симпатическое влияние).
Рефлексы с волюморецепторов. Уменьшение ОЦК ведет к увеличению ЧСС (симпатическое влияние).
1.Хеморецепторы, реагирующие на изменение концентрации кислорода и углекислого газа крови. При гипоксии и гиперкапнии ЧСС увеличивается (симпатическое влияние). Избыток кислорода вызывает уменьшение ЧСС.
2.Рефлекс Бейнбриджа. Растяжение устий полых вен кровью вызывает рефлекторное увеличение ЧСС
(торможение парасимпатического влияния).
Рефлексы с внесосудистых рефлексогенных зон.
Классические рефлекторные влияния на сердце.
1.Рефлекс Гольца. Раздражение механорецепторов брюшины вызывает урежение сердечной деятельности.
Такой же эффект при механическом воздействии на солнечное сплетение, сильном раздражении Холодовых рецепторов кожи, сильных болевых воздействиях (парасимпатическое влияние).
2.Рефлекс Данини-Ашнера. Надавливание на глазные яблоки вызывает урежение сердечной деятельности
(парасимпатическое влияние).
3. Двигательная активность, несильные болевые раздражения, активация тепловых рецепторов вызывают увеличение ЧСС (симпатическое влияние).
Гуморальная регуляция деятельности сердца.
Прямая (непосредственное влияние гуморальных факторов на рецепторы миокарда).
Основные гуморальные регуляторы деятельности сердца:
1. Ацетилхолин.
Действует на М
2
-холинорецепторы. М
2
-холинорецеп-горы относятся к метаботропным рецепторам. Образование лиганд-рецепторного комплекса ацетилхолина с этими рецепторами приводит к активации, ассоциированной с
М
2
-холинорецептором субъединицы Ga i
, которая тормозит активность аденилатциклазы и опосредованно снижает активность протеинкиназы А.
Протеинкиназа А имеет важное значение в активности миозинкиназы, играющей определяющую роль в фосфорили-ровании головок тяжелых нитей миозина, ключевого процесса сокращения миоцитов, поэтому можно полагать, что снижение ее активности способствует развитию отрицательного инотропного эффекта.
При взаимодействии ацетилхолина с М
2
-холино-рецептором не только угнетается аденилатциклаза, но и акти вируется мембранная гуанилатциклаза, ассоциированная с этим рецептором.
Это приводит к увеличению концентрации цГМФ и, как следствие, к активации протеинкиназы G, которая способна:
• фосфорилировать мембранные белки, образующие лигандуправляемые К
+
- и анионные каналы, что уве- личивает проницаемость этих каналов для соответствующих ионов;
• фосфорилировать мембранные белки, образующие лигандуправляемые Na
+
- и Са
++
- каналы, что приводит к уменьшению их проницаемости;
• фосфорилировать мембранные белки, образующие К
+
/ Na
+
- насос, что приводит к уменьшению его активности.
Фосфолирирование лигандуправляемых калиевых, натриевых, кальциевых каналов и К
+
Na
+
насоса протеинкиназой G приводит к развитию тормозного действия ацетилхолина на сердце, которое проявляется в отрицательном хронотропном и отрицательном инотропном эффектах.

Кроме того, следует иметь в виду, что ацетилхолин непосредственно активирует ацетилхолинрегулируемые калиевые каналы атипических кардиомиоцитов.
Тем самым снижает возбудимость этих клеток за счет увеличения полярности мембран атипичных кардиомиоцитовсиноатриального узла и, как следствие, вызывает урежение сердечной деятельности
(отрицательный хронотропный эффект).
2. Адреналин.
Действует на β
1
-адренорецепторы. β
1
-адренорецепторы относятся к метаботропным рецепторам. Воздействие на данную группу рецепторов катехоламинами активирует аденилатциклазу Gas-субъединицей, ассоциированной с данным рецептором.
Как следствие, в цитозоле повышается содержание цАМФ, происходит активация протеинкиназы А, которая ак- тивирует специфическую миозинкиназу, ответственную за фосфорилирование головок тяжелых нитей миозина.
Такое воздействие ускоряет сократительные процессы в миокарде и проявляется как положительные ино- и хроно-тропные эффекты.
1. Тироксин регулирует изоферментный состав миозина в кардиомиоцитах, усиливает сердечные сокращения.
2. Глюкогон оказывает неспецифическое влияние, за счет активации аденилатциклазы усиливает сердечные сокращения.
3. Глюкокортикоиды усиливают действие катехоламинов за счет того, что повышают чувствительность адренорецепторов к адреналину.
4. Вазопрессин. В миокарде имеются V1-рецепторы к вазопрессину, которые ассоциированы с G-белком. При взаимодействии вазопрессина с Vi -рецептором субъединица Ga q
активирует фосфолипазу Сβ. Активированная фосфолипаза Сβ катализирует соответствующий субстрат с образованием ИФ
3
и ДАГ. ИФ
3
активирует кальциевые каналы цитоплазматиче-ской мембраны и мембраны саркоплазматического ретикулума, что приводит к увеличению содержания кальция в цитозоле.
ДАГ параллельно активирует протеинкиназу С. Кальций инициирует мышечное сокращение и генерацию потенциалов, а протеинкиназа С ускоряет фосфорилирование головок миозина, как следствие, вазопрессин усиливает сердечные сокращения.
Простагландины I
2
, Е
2
ослабляют симпатические влияния на сердце.
Аденозин. Влияет в миокарде на Р1-пуриновые рецепторы, которых достаточно много в области синоатриального узла. Усиливает выходящий калиевый ток, увеличивает поляризацию мембраны кардиомиоцита. За счет этого снижается пейсмекерная активность синоатриального узла, уменьшается возбудимость других отделов проводящей системы сердца.
Ионы калия. Избыток калия вызывает гиперполяризацию мембран кардиомиоцитов и, как следствие, брадикардию. Малые дозы калия увеличивают возбудимость сердечной мышцы.
68. Дыхание…
Дыхание - это совокупность процессов, благодаря которым организм потребляет кислород из окружающей среды и выделяет углекислый газ.
Этапы дыхания:
1. Внешнее дыхание /вентиляция легких/ - обмен газов между атмосферным воздухом и альвеолярным, легочная вентиляция.
2. Диффузия газов в легких - обмен газов между альвеолярным воздухом и кровью в капиллярах легких.
3. Транспорт газов кровью - этот этап осуществляется за счет деятельности сердечно-сосудистой системы, в результате чего кислород доставляется к тканям, а углекислый газ - к легким.
4. Диффузия газов в тканях - обмен газов между кровью и тканями.
5. Тканевое дыхание - окислительно-восстановительные реакции, протекающие с потреблением кислорода и выделением углекислого газа.
Первые 4 этапа изучает физиология, последний, 5-ый - биохимия.
Обеспечение тканей О
2
и удаление из организма СО
2 зависит от четырех процессов:
1.Вентиляция легких
2.Диффузия газов в альвеолы и ткани из крови и в кровь.
3.Перфузия легких кровью /интенсивность кровотока в легких/.
4.Перфузия тканей кровью
Внешнее дыхание
В обеспечении вентиляции легких участвуют три анатомо-физиологических образования:
1) дыхательные пути, обладают небольшой растяжимостью и сжимаемостью, формируют поток воздуха,
2). легочная ткань, обладает высокой растяжимостью и эластичностью/ способность принимать исходное положение после прекращения деформирующей (растягивающей) силы,
3) грудная клетка, пассивная костно–хрящевая основа, ригидная к внешним воздействиям, объединенная в целое связками и дыхательными мышцами, снизу – подвижная диафрагма.
Взаимодействие грудной клетки и легких
Грудная клетка и легкие разделены плевральной полостью, которая представляет собой герметичную щель, содержащую небольшое количество жидкости (5 мл). Объем грудной клетки больше, чем объем легких. Поэтому легкие все время растянуты. Степень растяжения легких определяется транспульмональным давлением

/разница между давлением в легких (альвеолах) и плевральной полости. В области диафрагмы это давление
обозначается как трансдиафрагмальное.
При этом в легких постоянно действует сила, стягивающая их, которая получила название "эластической тяги
легких". Она зависит не только от эластичности легких, но, в значительной степени, и от силы поверхностного
натяжения слизи, покрывающей альвеолы. Жидкость покрывает огромную поверхность альвеол и тем самым
стягивает их. Однако сила поверхностного натяжения альвеол уменьшается за счет вырабатываемого в легких вещества сурфактанта. Благодаря этому легкие становятся более растяжимыми.
Эластичная тяга легких создает отрицательное давление в плевральной полости. При выдохе оно равно - 6 мм рт.ст. На вдохе при растяжении грудной клетки давление в плевральной полости становится еще более отрицательным - 10 мм рс.ст.
Понятие о пневмотораксе. Попадание воздуха в плевральную полость извне /открытый пневмоторакс /или из полости легких/закрытый пневмоторакс/ уравновешивает давление в плевральной полости с атмосферным и легкое за счет эластической тяги спадается. У человека в связи с особенностями грудной полости происходит спадание одного легкого.
Легкие- максимально приспособлены для газообмена. Наличие газообмена между легкими и кровью постоянно требует обновления воздуха в легких /альвеолярного воздуха/, т.к. газовый состав воздуха будет постоянно изменяться в сторону снижения концентрации О
2
и накопления СО
2
Вентиляция легких, т.е. обмен газов между внешней средой и альвеолярным воздухом обеспечивается за счет
вдоха /инспирация/ и выдоха /экспирация/, которые характеризуются глубиной вдоха и выдоха и частотой
дыхания.
Выделяют два вида дыхательных движений - спокойный вдох и выдох и форсированный вдох и выдох. Для нормального газообмена в атмосфере с обычным газовым составом здоровому взрослому человеку в спокойном состоянии необходимо 14-18 дыхательных движений в минуту, при длительности вдоха 2 с., объемной
скорости вдоха 250 мл/с.
При вдохе преодолевается ряд сил:
1) эластическое сопротивление грудной клетки,
2) эластическое сопротивление внутренних органов, оказывающих давление на диафрагму,
3) эластическое сопротивление легких,
4) вязко-динамическое сопротивление всех перечисленных выше тканей,
5) аэродинамическое сопротивление дыхательных путей,
6) силу тяжести грудной клетки,
7) силы инерции перемещаемых масс/органов/
Воздухоносные пути
Верхняя часть воздухоносных путей представлена полостью носа и носоглотки.
В легких воздухоносные пути (ВП) рассматриваются как ряд дихотомических трубок. В легком человека насчитывают 23 генерации бронхиального дерева.
Первые 16 относятся к проводящей зоне трахеобронхиального дерева, 7 - транзиторной и респираторной зоне.
Общая площадь поперечного сечения воздухоносных путей постепенно увеличивается с 2,5 см
2
в трахее (0 генерация), на уровне 16 генерации (терминальные бронхиолы) - 180 см", на уровне 18 генерации - около 1000 см
2
и далее - более 10 000 см
2
. Объем до 16 генерации включительно (анатомическое мертвое пространство, не принимает участия в газообмене) - 150 мл. Общий объем 23 генераций + 0 генерации (трахея) составляет 5700 мл
(общая емкость легких).
Функции воздухоносных путей (полости носа, носоглотки, респираторной зоны трахеобронхиального
дерева)
1. Кондиционирование воздуха.
2. Проведение потока воздуха.
3. Иммунная защита.
Кондиционирование воздуха
Полость носа и носоглотки
Посторонние частицы (более 10-15 мкм) задерживаются волосами преддверия носа и слизистой носовых ходов и носоглотки. Здесь происходит эффективное согревание воздуха за счет хорошего кровоснабжения слизистых оболочек, а так же увлажнение воздуха.
Трахея, бронхи
Происходит дальнейшее увлажнение воздуха. На слизистой этих образований осаждаются частицы менее 10 мкм, которые со слизью перемещаются в сторону входных / выходных ворот дыхательной системы.
Осаждение частиц происходит за счет слизи, которая в виде пленки (толщина 5-10 мкм) располагается на слизистой островками, имеет свойства геля, секретируется преимущественно бокаловидными клетками, за сутки
- 100 мл: 90 мл абсорбируется эпителиальными клетками, 10 мл передвигается по поверхности эпителия в глотку
-проглатывается или откашливается (мокрота). В мокроте наряду с чужеродными частицами выделяются погибшие клетки слизистой, микроорганизмы.
Секреция слизи находится под холин- и адренергическим контролем:
1   ...   17   18   19   20   21   22   23   24   ...   33


написать администратору сайта