Главная страница

1. Физиология как наука


Скачать 2.32 Mb.
Название1. Физиология как наука
Дата10.09.2019
Размер2.32 Mb.
Формат файлаpdf
Имя файлаnormalnaya_fiziologia_ekz.pdf
ТипДокументы
#86494
страница20 из 33
1   ...   16   17   18   19   20   21   22   23   ...   33
Регуляция
Ауторегуляция/миогенная/ регуляция
Повышение системного АД приводит к повышению тонуса миоцитов и сужению артерий, снижение АД- к уменьшению тонуса и расширению артерий. За счет этого механизма ауторегуляции поддерживается стабильный мозговой кровоток при изменениях системного АД в пределах 60-180 мм.рт.ст.
Гуморальная регуляция
Осуществляется за счет прямого влияния неспецифических и специфических метаболитов.
Общий мозговой кровоток

1.Мощным регулятором общего мозгового кровотока является напряжение СО
2
в артериальной крови, и как следствие в межклеточной жидкости. Изменение напряжения СО
2 на 1 мм.рт.ст. изменяет мозговой кровоток на
6%
Возрастание напряжения СО
2
/гиперкапния/ сопровождается расширением мозговых сосудов, а снижение ее/гипокапния/-их сокращением.
Напряжение О
2 не является фактором физиологической реляции мозгового кровообращения.
2. Важнейшие из гуморальных регуляторов
2.1 внутрисосудистые вазоконстрикторы: вазопрессин, ангиотензин, простагландины F, катехоламины
2.2.внутрисосудистые дилятаторы: ацетилхолин, гистамин, брадикинин.
Перераспределение крови между областями мозга
Локальное повышение функциональной активности нейронов приводит к функциональной гиперемии этой зоны мозга.
Механизмы перераспределения
Регуляция по быстрому контуру.
В зоне активности в межклеточной жидкости быстро в доли секунды повышается концентрация калия и как следствие локальное расширение сосудов и увеличение кровотока в этой зоне
Регуляция по медленному контуру/относительно медленная/
Интенсивна работающие нейроны достаточно быстро повышают потребление О
2 и выделение СО
2
. Повышение напряжение СО
2 приводит к расширению артерий и увеличению кровотока.
Нейрогенная регуляция
Менее эффективна чем гуморальная., так как конечный эффект зависит в первую очередь от рассмотренных выше факторов.
Среди нервных волокон влияющих на тонус мозговых сосудов выделяются адренэргические./альфа- и бета- адренорецпторы/(2 противопо ложных эффекта), холинэргические /сосудорасширяющие/, пептидэргические
/сосудорасширяющие/ -медиатор-вазоинтестинальный пептид, серотонин эргические /сосудосуживающие/.
65. Особенности гемодинамики в различных сосудистых регионах. Почечный кровоток…
Кровообращение в почках
1. В почках кровоток составляет 900-1200 мл/мин(20-25% от МОК)
2. Гидростатическое давление в капиллярах клубочков 50-70 мм.рт.ст., т.е. в 2 раза выше чем в других капиллярах
Регуляция
Гуморальная регуляция
Дистантные вазоконстрикторы: ангиотензин 11, катехоламины/в почечных сосудах-альфа-адренорецепторы/, вазопрессин.
Местно: почечные простагландины и почечные кинины вызывают дилятацию сосудов. Избыток СО
2 и аденозина- констрикцию.
Нервная регуляция.
Симпатическая нервная система через альфа-адренорецепторы- слабое констрикторное действие, через симпатические холинэргические волокна/есть такие/- слабую вазодилятацию.
Миогенная/ауторегуляция/ регуляция
Базальный тонус почечных сосудов высокий. Это позволяет обеспечить относительно стабильный кровоток при колебании системного давления от 70 до 180 мм.рт.ст.
Печеночное кровообращение
1.В печеной артерии кровяное давление 100-120 мм.рт.ст. В воротной вене давление около 10 мм.рт.ст., в синусоидах 5 мм.рт.ст, в печеночных венах 2-3 мм.рт.ст.
2.Величина кровотока 1,0-1,5 л/мин(20-30% от МОК) Через портальную систему 70-80% этого объема, по артериальной системе 20-30%. При максимальной дилятации через печень может проходить до 5,0 л/мин.
3.В норме постоянство кровотока поддерживается за счет реципрокных артерио-портальных взаимоотношений.
Усиление кровотока через порталь ную систему при функциональной гиперемии ЖКТ уменьшает артериальную перфузию печени, и наоборот снижение портального кровотока усиливает артериальную перфузию.
4.Печень депо крови/500 мл/
5.Венозный ток осуществляется ритмично в зависимости от фаз дыхательного цикла. При вдохе усиливается приток крови по портальной вене из-за механического сдавления сосудистого ложа ЖКТ, отток крови по печеночным венам и нижней полой вене так же увеличивается за счет присасывающего действия грудной клетки.
Регуляция
Миогенная регуляция/ауторегуляция/
Даже небольшое увеличение объемной скорости портального кровотока приводит к повышению тонуса воротной вены и сопряженно констрикцию печеночной артерии. Оба этих механизма направлены на обеспечение постоянства кровотока и давления в синусоидах
Гуморальная регуляция
Дистантная регуляция

Адреналин вызывают сокращение воротной вены/в ней альфа-адрено рецепторы/ и дилятации печеночной артерии/в ней бета-адренорецепторы/ и усиливает печеночный кровоток. Норадреналин вызывает констрикцию воротной вены и печеночной артерии, снижая печеночный кровоток.
Ангиотензин вызывает констрикцию портальной вены и печеночной артерии, уменьшая печеночный кровоток.
Ацетилхолин вызывает дилятацию печеночной артерии и увеличивает приток крови к печени, но вызывает сокращение печеночных венул, что припятствует оттоку крови из печени.
Глюкокортикоиды, инсулин, глюкогон,тироксин опосредовано усиливают печеночный кровоток, активирую метаболические процессы в гепатоцитах.
Местная регуляция
СО
2
, аденазин, гистамин, брадикинин, простагландины вызывают сужение портальных венул, уменьшая портальный кровоток, но они расширяют печеночные артериолы, усиливая приток артериальной крови в печень.
Нервная регуляция
Выражена слабо. Имеется небольшое ослабление печеночного кровотока при усилении симпатических влияний.
Парасимпатических влияний на печеночный кровоток не выявлено.
Кровообращение скелетных мышц
1. В покое кровоток в скелетных мышцах составляет 750-900 мл/мин (15-20% от МОК/. Функционирует 20-30% капилляров
2. При физической работе кровоток в мышцах может увеличивается 30 в раз ,через мышцы проходит до 85-90%
ОЦК, число функционирующих капилляров увеличивается в 2-3 раза
2. Мышцы, в отличие от сердца, могут работать в долг (во время работы - метаболизм за счет анаэробного обмена). После работы в мышцах в течение часа - очень интенсивное кровообращение (цель - вывести продукты анаэробного обмена). Это - "реактивная гиперемия".
3. Богатая иннервация, высокая чувствительность в значительному количеству гуморальных факторов.
4. При физической нагрузке работающие мышцы увеличивают приток к сердцу по венам.
5. При сокращении мышцы .ее кровоснабжение временно резко уменьшается/нарушается/.
Регуляция
Гуморальная регуляция
Местная регуляция
Наиболее сильными регуляторами являются метаболиты, образующие при работе мышц, их количество зависит от интенсивности выполняемой работы.
Это СО
2
, молочная кислота, аденозин, так же повышение концентрации внеклеточного калия,
гиперосмолярность, закисление среды. Они расширяют кровеносные сосуды в мышцах, увеличивают число
функционирующих капилляров, усиливают кровоток в них.
Дистантная регуляция
Серотонин, брадикинин, гистамин, ацетилхолин оказывают сосудорасширяющее действие. Катехоламины-в зависимости от типа адренорецепторов- альфа-вазоконстрикция, бета-дилятация сосудов мышц.
Нервная регуляция
Осуществляется симпатической нервной системой. В артериальной части –альфа- и бета-
адренорецепторы, в венозной- только альфа-адренорецепторы.
В покое сосуды скелетных мышц находятся под тоническим констрикторным влиянием симпатической нервной системы. В работающих мышцах это влияние уменьшается за счет центральных влияний
/рефлекторно/ (функциональный симпатолиз). Через симпатические холинэргические волокна- слабая
дилятация.
Особенности кровообращения в нижних конечностях
Артериальная система нижних конечностей
На артериальный кровоток в нижних конечностях оказывают влияние гравитационные факторы, с их учетом давление в систолу на уровне голени должно было бы на 60-70 мм.рт.ст. превышать таковое в лучевой артерии, однако оно выше такового на 10-15%. Для противодействия влияния силам гравитации на АД в
нижних конечностях сформировалось несколько компенсаторных механизмов.
1.Более толстая, с повышенными жестко-эластическими характеристиками, стенка артерий, наличие которой позволяет увеличивать скорость пульсовой волны с3 до 5 м/сек. Это приводит к тому, что в дистальном конце сосуда в систолу давление повышается намного раньше, чем других сосудистых регионах, и увеличение кровотока как бы чрезмерно отстает от повышения давления. Это вызывает состояние, которое обозначается как фаза обратного тока, которая противодействует кровотоку и предохраняет артерии нижних конечностей от переполнения кровью.
2.Значительный сброс крови через артерио - венозные шунты.
3.Опустошение вен при сокращении мышц нижних конечностей вызывает формирование мощного присасывающего действия и обеспечивает отток большего количества крови их артериальной системы. Чем в других сосудистых регионах.
Венозная система нижних конечностей
Выделяют поверхностные, глубокие и коммуникантные вены.
Поверхностная венозная система. Состоит из систем двух подкожных вен(v. Safena magna) и (v. Safena parva)

Система глубоких вен. Глубокие вены сопровождают соответствующие артерии. Система глубоких вен включает вены стопы(тыльные и подошвенные дуги), вены голени-3 пары глубоких вен(передняя и задняя большеберцовые, малоберцовые), подколенная вена и глубокая вена бедра.
Коммуникантные вены- создают соединение между венами.
Часть из них перфорирует фасции и соединяет глубокие вены и поверхностные. Такие вены называют
перфорантными. Они представляют собой тонкостенные венозные сосуды различного диаметра от долей миллиметра до 2 миллиметров. Чаще такие вены имеют косой ход и достигают длины до 15 см. Большинсиво
перфорантных вен имеют клапаны( от 2 до 5 и более клапонов). Клапаны открываются в стороны глубоких
вен и этим обеспечивают продвижение крови в норме в одном направлении- из поверхностных вен в глубокие
вены.
Различают прямые и непрямые перфоранты.
Прямые перфоранты – соединяют стволы крупных глубоких и поверхностных вен. Прямых перфорантов немного, они более крупные / сафено - подколенный, сафено – бедренный/
Непрямые перфоранты- соединяют более мелкие поверхностные и глубокие вены, которые в свою очередь впадают в магистральные вены/поверхностные и глубокие/.
Кровоток в нижних конечностях определяется факторами, определяющими венозный кровоток в целом/vis a tegro, vis a fronte/. Следует выделить фактор гидростатического давления, создаваемого силами гравитации, в вена нижних конечностей. В вертикальном положении давления в венах стопы возрастает под силой тяжести столба крови в 8-14 раз, гидростатическое давление столба крови/силы гравитации/ препятствует венозному кровотоку/возврату крови к сердцу/.
Против этого противодействия серьезно работает «мышечная помпа нижних конечностей». Сокращение скелетных мышц выдавливает кровь из глубоких вен в вышележащий участок сосуда/ обратно не пускают клапаны, хорошо развитые в глубоких венах и закрывающиеся при повышении давления/. Не может кровь в норме пойти из глубоких вен через перфоранты в поверхностные вены, так как перфоранты имеют клапаны, которые закрываются при повышении давления в глубоких венах и препятствуют переходу крови из них в поверхностные вены.
При расслаблении скелетных мышц в глубоких венах понижается давление, это оказывает присасывающие влияние на нижележащие отделы венозного русла, что способствует поступлению из них новых порций крови, кроме того снижение давления в глубоких венах приводит к открытию клапанов в перфорантах и поступлению крови из поверхностных вен в глубокие.
Такие особенности присущи процессу венозного кровообращению в нижних конечностях в норме.
Нарушение клапанного аппарата в перфорантах является одной из главных причин возникновения варикозной болезни/певерхностные вены слабо приспособлены к резкому повышению давления.
66. Лимфатическая система…
В организме наряду с системой кровеносных сосудов имеется система лимфатических сосудов. Она начинается с разветвленной сети замкнутых капилляров, стенки которых обладают высокой проницаемостью и способностью всасывать коллоидные растворы и взвеси. Лимфатические капилляры впадают в лимфатические сосуды, по которым находящаяся в них жидкость — лимфа — притекает к двум крупным лимфатическим протокам — шейному и грудному, впадающим в подключичные вены.
В отличие от кровеносных сосудов, по которым происходит как приток крови к тканям тела, так и ее отток от них, лимфатические сосуды служат лишь для оттока лимфы, т. е. возвращают в кровь поступившую в ткани жидкость. Лимфатические сосуды являются как бы дренажной системой, удаляющей избыток находящейся в органах тканевой, или интерстициальной, жидкости.
Важно, что оттекающая от тканей лимфа по пути к венам проходит через биологические фильтры — лимфатические узлы. Здесь задерживаются и не попадают в кровоток некоторые чужеродные частицы, например бактерии и т. п. Они поступают из тканей в лимфатические, а не в кровеносные капилляры вследствие более высокой проницаемости стенок первых по сравнению со вторыми.
Состав и свойства лимфы
Лимфа, собираемая из лимфатических протоков во время голодания или после приема нежирной пищи, представляет собой бесцветную, почти прозрачную жидкость, отличающуюся от плазмы крови в 3—4 раза меньшим содержанием белков. Лимфа грудного протока, а также лимфатических сосудов кишечника через 6—8 ч после приема жирной пищи непрозрачна, молочно-белого цвета, так как в ней содержатся эмульгированные жиры, всосавшиеся в кишечнике. Вследствие малого содержания белков вязкость лимфы меньше, а относительная плотность ниже, чем плазмы крови. Реакция лимфы щелочная. В лимфе содержится фибриноген, поэтому она способна свертываться, образуя рыхлый, слегка желтоватый сгусток.
Лимфа, оттекающая от разных органов и тканей, имеет различный состав в зависимости от особенностей их обме- на веществ и деятельности. Так, лимфа, оттекающая от печени, содержит больше белков, чем лимфа конечностей.
Из лимфатических сосудов желез внутренней секреции оттекает лимфа, содержащая гормоны.
В лимфе обычно нет эритроцитов, а есть очень небольшое количество зернистых лейкоцитов, которые выходят из кровеносных капилляров через их эндотелиальную стенку, а затем из тканевых щелей поступают в лимфатические капилляры. При повреждении кровеносных капилляров, в частности при действии ионизирующей радиации, проницаемость их стенок увеличивается и тогда в лимфе могут появляться эритроциты и зернистые
лейкоциты в значительном количестве. В лимфе грудного протока имеется большое число лимфоцитов. Последнее обусловлено тем, что лимфоциты образуются в лимфатических узлах и из них с током лимфы переносятся в кровь.
Образование лимфы
Лимфообразование связано с переходом воды и ряда растворенных в плазме крови веществ из кровеносных капилляров в ткани, а из тканей в лимфатические капилляры.
Стенка кровеносных капилляров представляет собой полупроницаемую мембрану. В ней имеются ультрамикроскопические поры, через которые происходит фильтрация. Величина пор в стенке капилляров разных органов, а, следовательно, и проницаемость капилляров неодинаковы. Так, стенка капилляров печени обладает более высокой проницаемостью, чем стенка капилляров скелетных мышц. Именно этим объясняется тот факт, что примерно больше половины лимфы, протекающей через грудной проток, образуется в печени.
Проницаемость кровеносных капилляров может изменяться в различных физиологических условиях, например под влиянием поступления в кровь так называемых капиллярных ядов (гистамин и др.)
Вода и растворенные в ней низкомолекулярные вещества: неорганические соли, глюкоза, а также кислород и другие газы, находящиеся в плазме крови, могут легко переходить из крови в ткани через стенку артериального колена капилляра. Давление крови в артериальном колене капилляра, равное примерно 30—35 мм рт. ст., способствует переходу воды из плазмы крови в тканевую жидкость.
Растворенные в плазме высокомолекулярные вещества — белки плазмы крови — не проходят через эндотелиальные клетки капилляров и остаются в кровяном русле. Создавая онкотическое давление, белки тем самым способствуют задержке воды в кровяном русле. Величина онкотического давления белков плазмы крови в артериальном колене капилляра примерно 25 мм рт. ст.
Таким образом, гидростатическое давление в капилляре способствует выходу воды из кровяного русла в тканевую жидкость, а онкотическое давление плазмы крови задерживает выход воды. Фильтрационное давление, обеспечивающее переход воды (и растворенных в ней низкомолекулярных веществ) из кровяного русла в тканевую жидкость, должно быть равным разности между указанными двумя давлениями, т. е. примерно 6—10 мм рт. ст.
Долгое время считали, что именно это давление обеспечивает транспорт воды и растворенных в ней веществ из кровяного русла в ткани. Однако 5—10 мм рт. ст. является величиной незначительной, которая к тому же уменьшается при падении уровня общего артериального давления.
Если бы фильтрация, т. е. переход воды и растворенных в ней нужных для тканей веществ, обеспечивалась только разностью между гидростатическим и онкотическим давлением, то этот процесс мог бы нарушаться даже при небольших колебаниях уровня артериального давления (например, при изменении положения частей тела в пространстве). Однако нарушения фильтрации не происходит вследствие того, что, помимо упомянутых факторов, транспорт воды из крови в тканевую жидкость, облегчается действием двух факторов:
1) периодическим колебанием давления в тканях в результате пульсации проходящих через ткани артерий, а также вследствие периодического сокращения скелетных мышц и гладких мышц внутренних органов, вызывающих периодическое сдавливание лимфатических сосудов;
2) наличия в лимфатических сосудах клапанов, вследствие чего периодическое сдавливание их вызывает активное нагнетание жидкости, заполняющей лимфатические сосуды, в центральном направлении, т. е. отсасывание ее из тканей. Последнее приводит к тому, что давление тканевой жидкости может стать ниже атмосферного примерно на 8 мм рт. ст. При этом фильтрационное давление, обеспечивающее переход жидкости из артериальной части капилляров в ткани, больше разности гидростатического и онкотического давлений на величину отрицательного давления, существующего в тканевой жидкости (на 8 мм рт. ст.), и составляет около 15—20 мм рт. ст.
3) Присасывающая сила отрицательного давления в тканях действует независимо от изменения гидростатического давления в капиллярах, т. е. от уровня системного артериального давления, что увеличивает надежность процесса перехода воды из кровяного русла в ткани и образование лимфы.
4) Фактором, содействующим лимфообразованию, может быть повышение осмотического давления тканевой жидкости и самой лимфы. Этот фактор приобретает большое значение, если в тканевую жидкость и лимфу переходит значительное количество продуктов диссимиляции. Большинство продуктов обмена имеет относительно низкую молекулярную массу и потому повышает осмотическое давление тканевой жидкости, что в свою очередь обусловливает поступление в ткани воды из крови и усиливает лимфообразование.
5) Усиление лимфообразования происходит при введении в кровь некоторых так называемых лимфогонных веществ. Лимфогонным свойством обладают вещества, извлеченные из земляники, пептоны, гистамин и др.
6) Механизм усиленного лимфообразования и лимфообращения при действии лимфогонных веществ состоит в том, что они увеличивают проницаемость стенки капилляров.
7) Действие лимфогонных веществ аналогично действию факторов, вызывающих воспалительные реакции
(бактерийные токсины, ожог и т. п.). Последние также увеличивают проницаемость капилляров, что ведет к образованию воспалительного экссудата.
8) Эндотелиальная стенка капилляров не является пассивной перепонкой, через которую фильтруется плазма крови. В разных тканях через стенки капилляров в лимфу поступают из крови различные вещества. Стенка капилляров обладает избирательной проницаемостью. Особенно отчетливо эта избирательность проявляется в
капиллярах мозга, которые не пропускают из крови ряд веществ, свободно проходящих через капиллярную стенку других органов.
1   ...   16   17   18   19   20   21   22   23   ...   33


написать администратору сайта