Главная страница

1. Физиология как наука


Скачать 2.32 Mb.
Название1. Физиология как наука
Дата10.09.2019
Размер2.32 Mb.
Формат файлаpdf
Имя файлаnormalnaya_fiziologia_ekz.pdf
ТипДокументы
#86494
страница22 из 33
1   ...   18   19   20   21   22   23   24   25   ...   33
ацетилхолин стимулирует секрецию слизи, а катехоламины ее тормозят. Гистамин, лейкотриены С4, D4> E4 стимулируют отделение слизи.

Трахея и бронхи имеют механизм самоочищения - мукоцилиарный транспорт. Он обеспечивается
мерцательными ресничками, которые скоординированно, однонаправленно (по направлению к входным / выходным воротам дыхательной системы) с частотой 900-1200 колебаний в минуту перемещают слизь со скоростью 5-20 мм/мин.
Бронхиолы и альвеолы
В них отсутствует система мукоцилиарного транспорта. Однако очищение потока осуществляется альвеолярными макрофагами, клетками Клара, сурфактантом.
Альвеолярные макрофаги
Альвеолярные макрофаги расположены на поверхности альвеол. Они фагоцитируют погибшие клетки, микроорганизмы, мелкие пылевые частицы, выделяют а-антитрипсин, который предохраняет альвеолы от действия протеаз. Альвеолярные макрофаги способны мигрировать вверх по ВП.
Клетки Клара
Участвуют в инактивации токсинов за счет цитохрома Р450, в образовании сурфактанта.
Сурфактант
- предотвращает контакт эндотелия альвеол с инородными частицами, микробами.
- обволакиваемые сурфактантом чужеродные частицы фагоцитируются альвеолярными макрофагами и транспортируются в вышележащие отделы ВП
- опсонизирует микробные антигены и тем самым ускоряет их фагоцитоз альвеолярными макрофагами.
69. Биомеханика спокойного вдоха и выдоха…
Биомеханика спокойного вдоха
В развитии спокойного вдоха играют роль: сокращение диафрагмы и сокращение наружных косых
межреберных и межхрящевых мышц.
Под влиянием нервного сигнала диафрагма /наиболее сильная мышца вдоха/сокращается, ее мышцы расположены радиально по отношению к сухожильному центру, поэтому купол диафрагмы уплощается на
1,5-2,0 см, при глубоком дыхании -на 10 см, растет давление в брюшной полости. Размер грудной клетки
увеличивается в вертикальном размере.
Под влиянием нервного сигнала сокращаются наружные косые межреберные и межхрящевые мышцы. У
мышечного волокна место прикрепления его к нижележащему ребру дальше от позвоночника, чем место его
прикрепления к вышележащему ребру, поэтому момент силы нижележащего ребра при сокращении этой
мышцы всегда больше, чем таковой у вышележащего ребра. Это приводит к тому, что ребра как бы
приподнимаются, а грудные хрящевые концы как бы слегка скручиваются. Так как при выдохе грудные
концы ребер располагаются ниже, чем позвоночные /дуга под углом/, то сокращение наружных межреберных мышц приводит их в более горизонтальное положение, окружность грудной клетки увеличивается, грудина
приподнимается и выходит вперед, межреберное расстояние увеличивается. Грудная клетка не только приподнимается, но и увеличивает свои саггитальный и фронтальный размеры. За счет сокращения
диафрагмы, наружных косых межреберных и межхрящевых мышц увеличивается объем грудной клетки.
Движение диафрагмы обуславливает примерно 70-80% вентиляции легких.
Грудная клетка выстлана изнутри париетальным листком плевры, с которым крепко сращена. Легкое
покрыто висцеральным листком плевры, с которым также крепко сращено. В нормальных условиях листки плевры плотно прилегают друг к другу и могут скользить /благодаря выделению слизи/ относительно друг друга. Силы сцепления между ними велики и листки плевры невозможно разъединить.
При вдохе париетальный листок плевры следует за расширяющейся грудной клеткой, тянет за собой
висцеральный листок и тот растягивает ткань легкого, что приводит к увеличению их объема. В этих условиях воздух, находящийся в легких /альвеолах/ распределяется в новом, большем объеме, это приводит к падению давления в легких. Возникает разница давлений между окружающей средой и легкими /трансреспираторное
давление/.
Трансреспираторное давление
трр
) - это разница между давлением в альвеолах (Р
альв
)
и внешним
/атмосферным/ давлением (Р
внеш
). Р
трр
= Р
альв.
- Р
внешн
,. Равняется на вдохе - 4 мм рт. ст. Эта разница и заставляет войти порцию воздуха через воздухоносные пути в легкие. Это и есть вдох.
Биомеханика спокойного выдоха
Спокойных выдох осуществляется пассивно, т.е. не происходит сокращения мышц, а грудная клетка спадается за счет сил, которые возникли при вдохе.
Причины, вызывающие выдох:
1. Тяжесть грудной клетки. Поднятые ребра опускаются под действием тяжести.
2. Органы брюшной полости, оттесненные диафрагмой вниз при вдохе, поднимают диафрагму.
3. Эластичность грудной клетки и легких. За счет них грудная клетка и легкие занимают исходное положение
Трансреспираторное давление в конце выдоха составляет =+ 4 мм.рт.ст.
Биомеханика форсированного вдоха
Форсированный вдох осуществляется за счет участия дополнительных мышц. Кроме диафрагмы и наружных косых межреберных мышц в нем участвуют мышцы шеи, мышцы позвоночника, лопаточные мышцы, зубчатые мышцы.
Биомеханика форсированного выдоха

Форсированный выдох активен. Он осуществляется за счет сокращения мышц - внутренних косых межреберных мышц, мышц брюшного пресса.
70. Клинико-физиологическая оценка внешнего дыхания. Легочные объемы…
Анатомо-физиолгические показатели - легочные объемы определяются антропометрическими данными
индивидуума : 1)росто-весовыми показателями, 2) строением грудной клетки, 3) дыхательных путей, 4) строением и свойствами легочной ткани (эластическая тяга легких, поверхностное натяжение альвеол), 5) силой дыхательных мышц
Легочные объёмы и ёмкости
ОЕЛ
ЖЕЛ
РО
вд
ЕВ
вд
ДО
РО
выд
ФОЕ
ОО
Коллапсный О
Минимальный О
Легочные объемы:
Общая емкость легких (ОЕЛ) - количество воздуха, находящееся в легких после максимального вдоха. ОЕЛ колеблется в больших пределах (от 0,5 до 8 литров) и зависит от роста, возраста, пола, состояния легких и грудной клетки.
ОЕЛ состоит из 2 частей:
жизненной емкости легких (ЖЕЛ) - объема, который человек может максимально выдохнуть после глубокого вдоха (в норме ЖЕЛ=Д(олжная)ЖЕЛ±10%),
и остаточного объема (ОО) - объема воздуха, который остается в дыхательной системе даже после максимального выдоха (N=1-1,2 л). Увеличение ОО снижает эффективность дыхания. Делится на коллапсный объем /выходит при спадании легкого/ и минимальный объем /истинный остаточный/.
Увеличение ЖЕЛ свидетельствует о повышении функциональных возможностей дыхательного аппарата. ЖЕЛ подразделяют на 3 составные части:
1. Дыхательный объем (ДО) - это объем воздуха, который человек вдыхает и выдыхает при каждом дыхательном цикле. В покое он составляет в среднем 20% от ЖЕЛ (0,3-0,6 л).
2. Резервный объем вдоха (РОвд) - воздух, который пациент может дополнительно вдохнуть, после спокойного вдоха /40% от ЖЕЛ/ (1,5-2,5 л).
3. Резервный объем выдоха (РОвд) - воздух, который пациент может максимально выдохнуть после спокойного выдоха /40% от ЖЕЛ/ (1,5-2,5 л).
Соотношение составных частей ЖЕЛ очень изменчиво. При физической нагрузке ДО может увеличиться до 80%, что сопровождается уменьшением РОвд и РОвыд до 10 %. ДО является показателем глубины дыхания.
Сумма ДО и РО
вд получила название емкость вдоха(ЕВ)
Сумма ОО и РОвыд получила название функциональной остаточной емкости (ФОЕ; объем воздуха,
оставшийся после спокойного выдоха; N=2,5-3,5).
Величина ФОЕ отражает эффективность дыхания.
Все легочные объемы имеют должные величины, которые представлены в специальных таблицах. В
таблицах отражена зависимость показателей не только от антропометрических параметров, но и от пола и
возраста. Должные показатели приняты за индивидуальную норму.
Объем мертвого пространства (ОМП) - это воздух, находящийся в носоглотке, трахее и бронхах и не участвующий в газообмене. Это анатомическое мертвое пространство. Этот объем не доходит до альвеол и не обменивается кислородом с кровью. ОМП у взрослого составляет в среднем 140-150 мл. Чем больше этот объем, тем менее эффективно дыхание. Есть понятие физиологического мертвого пространства - к нему относятся не только воздухоносные пути, но и альвеолы, которые не кровоснабжаются /альвеолярное мертвое
пространство/.
Коэффициент альвеолярной вентиляции (КАВ) указывает на то, какая часть воздуха обменивается при одном дыхании:
КАВ=(ДО-ОМП) / ФОЕ
В спокойном состоянии КАВ равен 1/7, то есть в альвеолах седьмая часть воздуха обменивается на атмосферный.
Методы измерения легочных объемов
1. Спирометрия - измерение легочных объемов. Позволяет определить ЖЕЛ, ДО, РОвд, РОвыд.
2. Спирография - регистрация легочных объемов. Позволяет документально зарегистрировать ЖЕЛ, ДО, РОвд,
РОвыд, а также частоту дыхания.
3. Определение остаточного объема
- с помощью спирографа с замкнутым контуром с использованием гелия /по степени разведения гелия/.
- Общая плетизмография тела /бодиплетизмография/.

Сложная дорогостоящая методика, выполняемая в специальной герметичной камере. Позволяет с высокой точностью определять общую емкость легких /ОЕЛ/ и остаточный объем /ОО/.
Вышеуказанные показатели характеризуют не столько саму функцию дыхания, сколько потенциальную
способность к выполнению этой функции.
71. Клинико-физиологическая оценка внешнего дыхания. Функциональные показатели...
Физиологические показатели являются динамическими, т.к. характеризуют саму функцию внешнего дыхания во времени.
1. Минутный объем дыхания (МОД) - объем воздуха, который проходит через легкие за 1 минуту. Этот показатель можно определить двумя методами: с помощью спирографии (ДО умножается на частоту дыхания) и путем сбора воздуха в мешок Дугласа. В покое МОД составляет 4-6 литров в минуту. При физиологической нагрузке учащение и углубление дыхания приводят к возрастанию МОД до 30 л/мин. (4-11 л)
2. Максимальная вентиляция легких (МВЛ). МВЛ - это максимальное количество воздуха, которое может вдохнуть и выдохнуть пациент за 1 минуту (ЧД – более 50 уд/мин; N=14-18). В норме человек должен за минуту максимально провентилировать объем, равный ЖЕЛ * 40. (МВЛ=ДЖЕЛ*25 ±10%)
3. Форсированная жизненная емкость легких (ФЖЕЛ) - количество воздуха, которое пациент может выдохнуть за счет экспираторного маневра /максимально быстро и полно/. Характеризуется объемом
форсированного выдоха за 1 секунду /ОФВ
1сек
/ (Форсированный экспираторный поток за 1 сек - дословный перевод термина с англ.).– Нормируется как ФЖЕЛ/ЖЕЛ, это индекс Тифно. В норме он составляет не менее
80% ЖЕЛ. Его снижение указывает на нарушение проходимости бронхиального дерева.
Основные показатели, регистрируемые при выполнении ФЖЕЛ
-Пиковая экспираторная объемная скорость /ПОС/-максимальный показатель объемной скорости потока
(л/сек) при выполнении ФЖЕЛ. Характеризует силу дыхательных мышц и калибр «главных» бронхов.
-Максимальная объемная скорость потока на уровне 25%, 50%, 75% от ФЖЕЛ. /МОС
25%
, МОС
50%
, МОС
75%
/.
Определяется мгновеннаяскорость в данный момент форсированного маневра. Показатель характеризует уровень обструкции, т.е. уровень нарушения проходимости в бронхиальном дереве. МОС
25%
характеризует проходимость на уровне крупных бронхов, МОС
50%
- на уровне средних бронхов, МОС
75%
- на уровне мелких
бронхов.
Для ПОС и МОС существуют должные величины, с которыми проводится сопоставление полученных результатов.
V
вд
, V
выд
– максимальная скорость вдоха (выдоха) – определяется методом пневмотахометрии: V
выд в норме 5-8 л/сек для мужчин, 4-6 л/сек для женщин; V
вд в норме не менее 90% от V
выд
РД –резервы дыхания – резервные возможности дыхательной системы, которые могут быть мобилизованы при переходе от спокойного к форсированному дыханию. РД=МВЛ-МОД. (N=60% от МВЛ)
Коэффициент альвеолярной вентиляции (КАВ) указывает на то, какая часть воздуха обменивается при одном дыхании:
КАВ=(ДО-ОМП) / ФОЕ
В спокойном состоянии КАВ равен 1/7, то есть в альвеолах седьмая часть воздуха обменивается на атмосферный.
КИК – коэффициент использования кислорода – характеризует количество кислорода, потребляемого из вдыхаемого воздуха за одну минуту (ПО
2
) N=40 ±10%
КИК=ПО
2
(мл) / МОД (л)
Показатели объемной скорости нельзя получить при спирографии, для этого используется
пневмотахография
Пневмотахография проводится с помощью приборов пневмотахометров, снабженных специальными
датчиками - термоанемометрами, при прохождении струи выдыхаемого воздуха меняется электрическое сопротивление пропорционально объемной скорости воздушного потока, что позволяет по показаниям прибора вычислить основные параметры внешнего дыхания. Компьютерный анализ позволяет представить полученную информацию в виде кривой «поток-объем», которая отражает проходимость различных участков дыхательных путей.
72. Газообмен в легких и тканях…
В процессе внешнего дыхания происходит газообмен в легких. За счет этого формируется состав альвеолярного и выдыхаемого воздуха.
Газовый состав вдыхаемого, альвеолярного и выдыхаемого воздуха
Дыхательные газы
Вдыхаемый воздух
Альвеолярный воздух
Выдыхаемый воздух
О
2
% мм рт.ст.
20,9%
160 мм рт.ст.
13,5%
104 мм рт.ст.
15,5%
120 мм рт.ст.
СО
2
% мм рт.ст.
0,03%
0,2 мм рт.ст.
5,3%
40 мм рт.ст.
3,7%
27 мм рт.ст.

Внешнее дыхание необходимо для обновления альвеолярного воздуха, т.к. в процессе жизнедеятельности идет постоянный процесс потребления О
2
и выделения СО
2
, это поддерживает концентрацию дыхательных газов в нем на постоянном уровне.
Интенсивность внешнего дыхания подчинена задачам обеспечения оптимальных условий для газообмена в организме. Оптимальные условия сохраняются в организме определенное время (3-4 секунды). Этим и определяется частота дыхания (14-18 в минуту). Таким образом, аппарат дыхания обладает резервами, которые позволяют обменивать воздух с определенной периодичностью.
Процесс газообмена состоит из 3-х этапов дыхания:
2 этапа дыхания. Обмен газов между альвеолярным воздухом и кровью.
3 этапа дыхания. Транспорт газов кровью.
4 этапа дыхания. Обмен газов между кровью и тканями.
В основе 2 и 4 этапов дыхания лежат одни и те же механизмы, т.е. в основе обмена газов между альвеолами и кровью, а также кровью и тканями лежит одно физическое явление - процесс диффузии.
Механизмы 2-го и 4-го этапов дыхания.
Мембраны клеток хорошо проницаемы для газов, следовательно для перемещения газов из одной среды в другую не надо активного транспорта, а достаточно физического процесса диффузии.
В основе диффузии лежит разность концентраций. Молекулы из области большей концентрации распространяются в область меньшей концентрации.
Если газ находится над жидкостью, он также легко в неѐ переходит, растворяясь в ней. Интенсивность перехода газов в жидкость зависит от парциального давления газа над ней.
Давление газа в смеси с другими газами, выраженное в мм рт. ст., принято называть "парциальным давлением".
Давление газа, растворенного в жидкости, обозначают как "напряжение".
При относительно длительном контакте газов и жидкости в определенный момент времени парциальное давление газа над жидкостью и напряжение газа в жидкости выровняются.
При резком снижении парциального давления одного из газов либо снижении суммарного атмосферного давления жидкость с растворенными в ней газами начинает "кипеть" (до тех пор, пока вновь не выровняются парциальное давление и напряжение газов (примеры с шампанским, "кессонная болезнь" - помощь - экстренное помещение в барокамеру с постепенным снижением давления)).
Содержание дыхательных газов в альвеолярном воздухе, крови и тканях
Венозная кровь
Альвеолярный воздух
Артериальная кровь
Ткани
СО
2
(мм рт. ст.)
46 38 40 50-60
О
2
(мм рт. ст.)
40 100 100 20-40
Примечание: стрелочкой указано направление диффузии.
При этом следует иметь в виду, что аэрогематический барьер легких обладает определенной проницаемостью, которая характеризуется диффузионной способностью легких.
Диффузионная способность легких - это количество мл газа которое проходит за 1 минуту через легочную мембрану при разнице парциальных давлений по обе стороны мембраны 1 мм.рт.ст. Для О
2 составляет 20-25 мл, для СО
2 она существенно больше/т.к. разница парциального давления меньше многократно/, а объем выделяемого СО
2 такой же как и О
2
. С возрастом диффузионная способность легких снижается.
Гистагематический
73. Транспорт газов кровью…
Механизмы связывания газов кровью
1. Физическое растворение
2. Химическое связывание
1   ...   18   19   20   21   22   23   24   25   ...   33


написать администратору сайта