1. Физиология как наука
Скачать 2.32 Mb.
|
Тиреокальцитонин - гормон, сберегающий кальций в организме, снижает его уровень в крови, способствует переходу кальция в костную ткань, усиливает минирализацию костной ткани угнетает активность остеокластов ; активирует активность остеобластов, угнетает процессы всасывания Са ++ в кишечнике; угнетает процесс реабсорбции Са ++ в почечных канальцах. Околощитовидные железы У человека имеются две - три пары околощитовидных желез. Околощитовидные железы продуцируют паратгормон. Паратгормон повышает содержание кальция в крови: активирует функцию остеокластов, разрушающих костную ткань, активирует процессы всасывания Са ++ в кишечнике; усиливает процесс реабсорбции Са ++ в почечных канальцах. При недостатке функции околощитовидных желез (гипопаратиреоз) резко повышается возбудимость ЦНС и возникают приступы судорог. При отсутствии паращитовидных желез (например, их удаление при операциях на щитовидной железе) наступает смерть, причиной которой являются судороги дыхательных мышц. При избыточной функции паращитовидных желез (гиперпаратиреоз) развивается остеопороз (разрушение костной ткани) и мышечная слабость. Механизм действия: Тиреоидные гормоны обладают широким спектром действия и обладают геномным и негеномным эффектами. Они оказывают влияние на процессы транскрипции и, как следствие, вызывают изменение синтеза белков, являющихся ключевыми ферментами метаболизма. Преимущественно тиреоидные гормоны активируют процессы катаболизма. Негеномные эффекты тиреоидных гормонов как бы сопряжены с геномными эффектами. Взаимодействуя с рецепторами цитоплазматической мембраны, тиреоидные гормоны активируют процессы транспорта глюкозы, аминокислот через клеточные мембраны. Эффекты гормонов реализуются после связывания гормона с мембранным рецептором (образование вторичных посредников, увеличение транспорта в клетку субстратов, в частности аминокислот, необходимых для синтеза белка, освобождение энергии в митохондриях). 38. Физиология надпочечников… Надпочечники состоят из мозгового и коркового вещества. Они представляют собой разные по структуре и функциям образования, выделяющие отличающиеся по своему действию гормоны. Гормоны коры надпочечников делятся на три группы: 1) минералокортикоиды 2) глюкокортикоиды 3) половые гормоны Минералокортикоиды. К ним относятся альдостерон и дезоксикортикостерон. Они выделяются клубочковой зоной. Эти гормоны участвуют в регуляции минерального обмена: и в первую очередь уровня натрия и калия в плазме крови. Относятся к группе жизненно важных веществ. Из минералокортикоидов наиболее активен альдостерон. Эффекты минералокортикоидов (на примере альдостерона): 1. Увеличивает реабсорбцию натрия и хлора в почечных канальцах за счет активации синтеза ферментов, повышающих энергетическую эффективность натриевого насоса. 2. Снижает реабсорбцию калия в почечных канальцах. Подобные изменения наблюдаются в клетках эпителия желудка, кишечника, слюнных и потовых желез. Альдостерон, как и другие стероидные гормоны, вызывает индукцию синтеза специфических белков. Он индуцирует синтез: 1) белков-транспортеров натрия, которые встраиваются в апикальную мембрану почечных канальцев и обес- печивают транспорт натрия из просвета канальца в клетки почечного канальца; 2) натрий, калиевой АТФазы, которые встраиваются в базальную мембрану клеток почечных канальцев и обеспечиваеют: а) транспорт натрия и клеток почечных канальцев в межклеточное пространство; б) транспорт калия из межклеточного пространства в клетки почечных канальцев; 3) белков-транспортеров калия, которые встраиваются в апикальную мембрану клеток и обеспечивают вы- ведения калия из клеток канальцев в просвет канальцев; 4) митохондриальных ферментов, стимулирующих образование АТФ, который необходим для энерго- обеспечения активного транспорта ионов в почках. Такие процессы происходят не только в почках, но и в других тканях (гладких мышцах сосудов, ЖКТ и др.). Негеномные эффекты альдостерона. Предполагаемый рецептор альдостерона, возможно, ассоциирован с G-белком клеточной мембраны и обладает всеми свойствами рецепторов, относящихся к этим группам. При действии альдостерона активируется фосфолипаза С, в клетке нарастает содержание второго посредника ИФ 3 , который активирует Na + , Н -обменник в апикальной мембране эндотелия почечного канальца. Альдостерон опосредованно вызывает увеличение содержания цАМФ, активируется протеинкиназа А. Протеинкиназа А способна активировать различные группы протеинкиназ, а также непосредственно путем фосфорилирования изменять активности различных внутриклеточных белков, в том числе и факторов транскрипции. Внутриклеточные процессы, активируемые таким путем, обеспечивают модификацию (модулирование) геномных эффектов альдостерона в почках. В ряде других органов альдостерон опосредованно через G-белок активирует мембранносвязанную фосфолипазу С(3, которая, катализируя соответствующий субстрат. Вызывает повышение в цитоплазме эндотелиальных клеток кровеносных сосудов, гладких мышц кровеносных сосудов, матки, ЖКТ, сердечных миоцитах ИФ 3 ИФ 3 активирует кальциевые каналы, вызывая повышение содержания ионизированного кальция в цитозоле, обра- зование комплекса кальций-кальмодулин. Параллельно в цитоплазме этих клеток повышается содержание ДАГ. Это активирует протеинкиназу С. Наличие комплекса кальций-кальмодулин, протеинкиназы С, обладающих способностью активировать киназы, имеющие прямое отношение к фосфорилированию сократительных белков, а также увеличение концентрации внутриклеточного ионизированного кальция-фактора, инициирующего сократительную активность, вызывает увеличение тонуса кровеносных сосудов. Это приводит к увеличению АД, изменению тонуса гладкой мускулатуры в других органах. Следует иметь в виду, что рецептор к альдостерону обладает достаточно высоким сродством и к кортизолу. В почках существует специальный механизм, обеспечивающий специфичность рецепторов к альдостерону. Он заключается в следующем: специальный фермент инактивирует кортизол, а на альдостерон не влияет. В гиппокампе при отсутствии этого фермента рецептор альдостерона доступен для действия кортизола. Рецептор глюкокортикоидов сначала активируется, связываясь с гормоном, и лишь затем связывается со специфическими структурами ДНК. Рецептор минералокортикоидов связывается не только с альдостероном, но и с кортизолом. Специфичность этого рецептора к альдостерону в почках достигается тем, что фермент, 11-гидроксистероидегид- рогеназа (11-ГСДГ), инактивирует кортизол, а на альдостерон не влияет. В мозге (гиппокамп) у некоторых минералокортикоидных рецепторов этот фермент отсутствует, поэтому глюкокортикоиды там также оказывают действие. Следующие за связыванием с ДНК стадии активации, такие как транскрипция и трансляция, аналогичны для всех приведенных здесь типов рецепторов. Таким образом, небольшие различия метаболизма отдельных тканей обеспечивают специфичность действия гормонов. Глюкокортикоиды. Вырабатываются пучковой зоной коры надпочечников, к ним относятся кортизол, кортикостерон гидрокортизон,. Оказывают влияние на все виды обмена веществ в организме: углеводный, белковый и жировой. Наиболее активен из выше перечисленных гормонов кортизол. Эффекты глюкокортикоидов: 1 Участие в формировании стресс- реакций, участие в срочной и долговременной адаптации, 2. Повышение возбудимости нервной системы, 3. Противовоспалительное действие. 4. Ослабление действия иммунной системы, 5. Снижение содержания в крови лимфоцитов, эозинофилов, базофилов, 6. Снижение чувствительности к инсулину, 7. Повышение чувствительности к катехоламинам, 8. Повышение уровня глюкозы в крови, 9. Увеличение образования и отложения гликогена в печени и тканях. 10. Стимуляция глюконеогенеза. 11. Снижение проницаемости клеточных мембран ряда тканей для глюкозы, препятствуют поступлению ее в ткани, 12. Снижение проницаемости клеточных мембран для аминокислот, препятствуют поступлению их в клетки. 13. Стимуляция катаболизма белков и тормозит анаболиз белков /антианаболическое действие/, 14. Усиление мобилизации жира из жировых депо. 15. Влияние на водный и электролитный обмен. Повышение выделения К + из организма и повышение уровня Na + и воды в межклеточном пространстве. Механизм действия. Проникает в клетку двумя путями. Большая часть молекул гормона легко проникает через цитоплазматическую мембрану. Они взаимодействуют со специфическим рецептором в цитозоле, образуя комплекс гормон-рецептор. Часть молекул проходит предварительный этап взаимодействия с рецепторами цитоплазматической мембраны. Цитозольный комплекс гормон-рецептор проходит через мембрану ядра, где образуется комплекс гормона с ядерным рецептором. Образовавшийся комплекс гормон-ядерный рецептор осуществляет регуляторное влияние на процесс транскрип- ции и, как следствие, на синтез белков. Большая часть образовавшихся под влиянием кортизола белков - это внутриклеточные ферменты, которые и реализуют метаболические эффекты гормона на углеводный, белковый и жировой обмен, а также существенно изменяют чувствительность тканей к инсулину (понижение чувствительности) и катехоламинам (повышение чувствительности). Под влиянием кортизола образуются липокортины, которые интерокринным (внутриклеточно) и аутокринным (взаимодействуя с мембранным рецептором к липокортину) путями подавляют активность фосфолипазы А 2 Угнетение активности фосфолипазы А 2 , уменьшая образование в клетке простагландинов и леикотриенов. Этот механизм важен для понимания противовоспалительного действия глюкокортикоидов. Половые гормоны вырабатываются сетчатой зоной коры надпочечников. К ним относятся андрогены, эстрогены и прогестерон. Играют важное значение в развитии вторичных половых признаков в детском возрасте - в этот период внутрисекреторная функция половых желез слабо выражена. При достижении половой зрелости роль гормонов сетчатой зоны коры надпочечников невелика. Эти гормоны вновь приобретают некоторое значение в старческом возрасте - после угасания функции половых желез. Гормоны мозгового вещества надпочечников Мозговое вещество надпочечников состоит из хромоффинных клеток,по существу это 2 нейроны симпатической нервной системы, огромный симпатический ганглий вынесеный на периферию /иннервируется только преганглионарными волокнами СНС/. 2 отличия- клетки надпочечников: 1) синтезируют больше адреналина, чем норадреналина/6:1/,чем нейроны симпатической нервной системы, 2) выделяют гормоны непосредственно в кровь. Гормоны мозгового вещества-катехоламины образуются из аминокислоты тирозина, далее ДОФА- дофамин-норадреналин-адреналин. Катехоламины – гормоны срочной адаптпции,главные гормоны борьбы/агрессии/ и обороны, гормоны первой фазы стресс-реакции/фазы тревожности/. Катехоламины обладают мощным катоболическим эффектом: Ускоряет окислительные процессы в тканях, повышает потребление кислорода, Активирует расщепление гликогена, Активирует распад жиров, усиливает окисление жирных кислот, Интенсифицирует энергетический обмен Физиологические эффекты Зависят от того какой вид адренорецепторов преобладает в той или иной структуре. Возбуждение альфа- адренорецепторов вызывает: Сужение мелких артериальных сосудов кожи и органов брюшной полости /как следствие повышение АД/. Сокращение матки. Расширение зрачка. Раслабление гладких мышц желудка и кишечника/ как следствие тормрзится пищеварение/.Ускорение агрегации тромбоцитов Возбуждение бета-адренорецепторов вызывает: Стимуляцию возбудимости, проводимости и сократимости миокарда/как следствие учащение и усиление сердечных сокращений/.Стимуляцию секреции ренина. Расширение бронхов/ повышается эффективность дыхания/. Расширение некоторых артериальных сосудов/коронарных/ например/. Расслабление матки. Т.Е. адренэргическое влияние на органы обеспечивает необходимые условия для решения задач срочной адаптации. 39. Эндокринная функция поджелудочной железы… Это железа смешанной секреци. Поджелудочная железа, как железа внутренней секреции, продуцирует два основных гормона - инсулин и глюкагон. Инсулин продуцирует бета-клетками, а глюкагон - альфа-клетками островков Лангерганса. Эффекты инсулина Инсулин оказывает влияние на все виды обмена веществ, он способствует анаболическим /синтез/процессам, усиливает синтез гликогена, жиров, белков, тормозит эффекты гормонов обладающих катоболическим действием/катехоламины, глюкокортикоиды, глюкогон и др/ Эффекты инсулина по скорости реализации делят на четыре группы 1 очень быстрые /через несколько секунд/- 1.1.повышение проницаемости клеточных мембран для глюкозы, 1.2.активация калий -натриевого насоса/избыток К закачивается в клетку и удаляются из клетки дополнительные порции Na / и как следствие частичная гиперполяризация мембран клеток за исключением гепатоцитов/. 2.быстрые эффекты/в течение нескольких минут/-2.1.активация ферментов, усиливающих анаболические процессы, 2.2.торможение ферментов, ответственных за катоболические процессы 3.медленные эффекты /в течение нескольких часов/- 3.1.повышение проницаемости мембран для аминокислот, 3.2.усиление синтеза иРНК и ферментов синтеза белков 4.очень медленные эффекты/от часов до суток/ активация митогенеза и размножения клеток Действие инсулина на углеводный обмен 1 увеличение проницаемости клеточных мембран для глюкозы, 2 увеличение транспорта глюкозы из крови в клетки, 3 гипогликемия/как следствие 1 и 2/, 4 активация процессов гликолиза, 5 усиление процессов фосфолирирования, 6 стимуляция синтеза гликогена, 7 торможение распада гликогена, 8 угнетение глюконеогенеза Действие инсулина на белковый обмен 1 повышение проницаемости мембран для аминокислот, 2 усиление синтеза иРНК, 3 активация в печени синтеза аминокислот, 4 повышение активности ферментов синтеза белков, 5 торможение активности ферментов расщепляющих белки Влияние инсулина на жировой обмен 1 стимуляция синтеза свободных жирных кислот из глюкозы, 2 стимуляция синтеза триглицеридов , 3 активация окисления кетоновых тел в печени, 4 подавление распада жира Регуляция инкреции инсулина Главным регулятором является глюкоза, активирующая в бета –клетках аденилатциклазы, что в конечном итоги приводит к выбросу инсулина из гранул бета- клеток в кровь. Вегетативная нервная система – парасимпатическая и ацетилхолин- стимулируют выброс инсулина в кровь, симпатическая и норадреналин- тормозят этот процесс. При недостатке инсулина в организме развивается сахарный диабет. Эффекты глюкагона 1. Усиливает гликогенолиз в печени и мышцах,2. Способствует глюконеогенезу. 3. Гипергликемия,4. Активирует липолиз/ лизис/, 5. Подавляет синтез жира. 6. Увеличивает систез кетоновых тел в печени, 7.Угнетает их окисление, 8.Стимулирует катоболизм/распад/ белков в тканях, прежде всего в печени, 9.Увеличивает синтез мочевины Увеличение глюкозы в крови тормозит выделение гормона, уменьшение- стимулирует выброс его в кровь, Симпатическая нервная система и катехоламины стимулируют выброс глюкогона в кровь, а парасимпатическая-тормозит. ИНСУЛИНОВЫЙ РЕЦЕПТОР Главную роль в формировании эффектов инсулина играет фосфорилирование внутриклеточных белков- субстратов инсулинового рецептора (IRS), основным из которых является IRS-1. Рецептор к инсулину обладает тирозинкиназной активностью. Он состоит из двух α-субъединиц и двух β- субъединиц, которые связаны между собой дисульфидными связями и нековалентными взаимодействиями. На поверхности мембраны находятся α-субъединицы с доменом для связывания с инсулином, β-субъединицы пронизывают бислой мембраны и не взаимодействуют непосредственно с инсулином. Каталитический центр тирозинкиназной активности находится на внутриклеточном домене находится β- субъединиц. Взаимодействие инсулина с α-субъединицами рецептора приводит к фосфорилированию β-субъединиц рецептора, в таком состоянии они способны фосфорилировать другие внутриклеточные белки, изменяя тем самым их функциональную активность. Фосфорилирование ИРФ-1 повышает активность этого белка и позволяет ему активировать различные цитозольные белки - ферменты. Это проводит к активации нескольких сигнальных путей и каскадов специфических протеинкиназ (фосфолипаза Ср, Ras-белок, Raf-1 протеинкиназа, митогенактивируемые про-теинкиназы (МАПКК, МАПК), фосфолипаза А 2 ), вызывает фосфорилирование ферментов, факторов транскрипции (ПСАТ), обеспечивая многообразие эффектов инсулина. Эти процессы осуществляют каскадно. В настоящее время установлено, что один из цитозоль-ных белков присоединяется к уже фосфорилированному рецептору инсулина. Образовавшийся комплекс взаимодействует с Ras-белком. Активированный R-белок активирует протеинкиназу Raf-1. Эта протеинкиназа активирует протеинкиназу МАПКК, МАПК, что в конечном счете вызывает длительные эффекты инсулина через активацию ПСАТ. Таким образом, инсулин реализует свое действие через различные пути внутриклеточного проведения сигнала. Именно это и обеспечивает многообразие эффектов инсулина. Рецепторы к глюкогону. Рецепторы к глюкогону находятся в цитоплазматиче-ских мембранах клеток печени, мышц. Они (рецепторы к глюкогону) ассоциированы с G-белком. При формировании комплекса глюкогон-рецептор субъединица Ga s взаимодействует с аденилатциклазой и активирует ее. Активация аденилатциклазы приводит к увеличению содержания цАМФ в цитозоле, который в свою очередь активирует протеинкиназу А. Она (протеинкиназа А) активирует комплекс внутриклеточных ферментов, обеспечивающих реализацию эффектов глюкогона. |