Главная страница

1. Физиология как наука


Скачать 2.32 Mb.
Название1. Физиология как наука
Дата10.09.2019
Размер2.32 Mb.
Формат файлаpdf
Имя файлаnormalnaya_fiziologia_ekz.pdf
ТипДокументы
#86494
страница15 из 33
1   ...   11   12   13   14   15   16   17   18   ...   33

атриовентрикулярный узел. Водитель ритма(пейсмейкер) третьего порядка и т.д.
Опыты Гаскела и Станниуса подтверждают изложенные положения.
Особенности возбуждения сердечной мышцы
1. Закон "все или ничего". Сердечная мышца при действии раздражителя либо не отвечает на возбуждение, если раздражитель слабый, либо отвечает полной силой.
В основе закона лежит особенность строения сердца - функциональный синцитий. Мышечные клетки сердца связаны между собой вставочными дисками(нексусы), в этом сходство с гладкой мускулатурой.
2.На графике потенциала действия сердечной мышцы, в отличие от скелетной, на начальном этапе фазы реполяризации регистрируется т.н. "фаза плато", обусловленная входящим током ионов Са
++
. Этот процесс обусловлен открытием "медленных" кальциевых каналов, продолжающих процесс деполяризации мембраны кардиомиоцита уже после закрытия Na-евых каналов.
Наличие «фазы плато» приводит к значительному удлинению пика потенциала действия и как следствие значительное увеличение времени « фазы абсолютной рефрактерности», во время которой сердечная мышца
абсолютно невозбудима.
Фазы изменения возбудимости сердечной мышцы.
1. Абсолютная рефрактерность (0,27 сек) - полная невозбудимость.
2. Относительная рефрактерность (0,03 сек) - способность возбуждаться в ответ на сверхпороговый раздражитель. Исходя из того, что продолжительность этих двух фаз в сумме составляет 0,3 сек, можно рассчитать максимально возможную частоту сердечных сокращений (60 сек. : 0,3 сек. = 200/мин.)
3. Супернормальная возбудимость. В эту фазу возбудимость в сердце выше нормы и действие в этот момент даже слабых (подпороговых) раздражителей (рубцы, спайки, атеросклеротические бляшки) может приводить к внеочередному сокращению - экстрасистоле.
Проводимость - способность органа распространять возбуждение на невозбужденные участки.
Последовательность охвата возбуждением отделов сердца:
1. предсердия (правое, а затем и левое); 2. при прохождении возбуждения на желудочки - единственное место, содержащее возбудимые ткани - а/в узел, т.к. в остальных местах - фиброзное кольцо; 3 межжелудочковая перегородка; 4. верхушка; 5. боковые стенки желудочков; 6. основания желудочков.
Скорость проведения возбуждения: предсердие - 1 м/сек, атриовентрикулярный узел - 0,2 м/сек, пучок Гиса -
4 м/сек, волокна Пуркинье - 3 м/сек, типичный миокард - 0,8 м/сек.
Следовательно, возбуждение по желудочкам распространяется не диффузно, а последовательно по
проводящей системе (это объясняет синхронность сокращения типичных кардиомиоцитов в различных участках желудочков. Кроме того, имеет место задержка проведения возбуждения в атриовентрикулярном узле, что позволяет систоле предсердий опережать систолу желудочков.
Один из вариантов аритмии - экстрасистолия (внеочередное сокращение сердца). Возникает в связи с действием подпороговых по силе раздражителей (постинфарктные рубцы, атеросклеротические бляшки, очаги миокардита) в супернормальную фазу возбудимости, что и приводит к внеочередному сокращению.
В зависимости от локализации в сердце гетеротопного очага импульсации экстрасистолы подразделяются на
предсердные и желудочковые.
На ЭКГ экстрасистолу можно отличить по определенным признакам:
1. Облигатный признак - укорочение интервала RR перед экстрасистолой.
2. Факультативный признак - наличие "компенсаторной паузы" (т.е. удлинение интервала RR после экстрасистолы вследствие выпадения очередного сердечного цикла). Наблюдается в случае, если очередной импульс из синоатриального узла приходится на период абсолютной рефрактерности. При нормо- или брадикардии данный признак может отсутствовать.
3. Дополнительный признак для желудочковых экстрасистол - наличие извращенного желудочкового комплекса вместо классической последовательности элементов на ЭКГ (т.к. возбуждение охватывает желудочки сердца не в обычной последовательности).
Экстрасистолы подразделяются на одиночные и групповые.
52. Сердце, его гемодинамические функции...
Сократимость сердечной мышцы.
Виды мышечных сокращений сердечной мышцы.
1. Изотонические сокращения - это такие сокращения, когда напряжение (тонус) мышц не изменяется
(«изо» - равные), а меняется только длина сокращения (мышечное волокно укорачивается).

2. Изометрические - при неизменной длине меняется только напряжение сердечной мышцы.
3. Ауксотонические - смешанные сокращения (это сокращения, в которых присутствуют оба компонента).
Фазы мышечного сокращения:
1.
Латентный период - это время от нанесения раздражения до появления видимого ответа. Время ла- тентного периода тратится на: а) возникновение возбуждения в мышце; б) распространение возбуждения по мышце; в) электромеханическое сопряжение (на процесс связи возбуждения с сокращением); г) преодоление вязкоэластических свойств мышц.
2. Фаза сокращения выражается в укорочении мышцы или в изменении напряжения, либо и в том, и в другом.
3. Фаза расслабления - возвратное удлинение мышцы, или уменьшение возникшего напряжения, или то и другое вместе.
Сокращение сердечной мышцы.
Относится к фазным, одиночным мышечным сокращениям.
Фазное мышечное сокращение - это такое сокращение, у которого четко выделяются все фазы мышечного со- кращения.
Сокращение сердечной мышцы относится к категории одиночных мышечных сокращений.
Особенности сократимости сердечной мышцы
Для сердечной мышцы характерно одиночное мышечное сокращение.
Это единственная мышца организма, способная в естественных условиях к одиночному сокращению, которое
обеспечивается длительным периодом абсолютной рефрактерности, в течение которого сердечная мышца
неспособна отвечать на другие, даже сильные раздражители, что исключает суммацию возбуждений,
развитие тетануса.
Работа в режиме одиночного сокращения обеспечивает постоянно повторяющийся цикл «сокращение-
расслабление», который и обеспечивает работу сердца как насоса.
Механизм сокращения сердечной мышцы.
Механизм мышечного сокращения.
Сердечная мышца состоит из мышечных волокон, которые имеют диаметр от 10 до 100 микрон, длину - от 5 до
400 микрон.
В каждом мышечном волокне содержится до 1000 сократительных элементов (до 1000 миофибрилл - каждое мы- шечное волокно).
Каждая миофибрилла состоит из множества параллельно лежащих тонких и толстых нитей (миофиламентов).
Толстые нити.
Это собранные в пучок примерно 100 молекул белка миозина.
Тонкие нити.
Это две линейные молекулы белка актина, спирально скрученные друг с другом.
В желобке, образованном нитями актина, расположен вспомогательный белок сокращения - тропомиозин. В непосредственной близости от него к актину прикреплен еще один вспомогательный белок сокращения -
тропонин.
Мышечное волокно делится на саркомеры Z-мембранами. К Z-мембране прикреплены нити актина. Между двумя нитями актина лежит одна толстая нить миозина (между двумя Z-мембранами), и она взаимодействует с нитями актина.
На нитях миозина есть выросты (ножки), на концах выростов имеются головки миозина (150 молекул миозина).
Головки ножек миозина обладают АТФ-азной активностью. Именно головки миозина (именно эта АТФ-аза) катализирует АТФ, высвобождающаяся при этом энергия обеспечивает мышечные сокращения (за счет взаимодействия актина и миозина). Причем АТФазная активность головок миозина проявляется только в момент их взаимодействия с активными центрами актина.
У актина имеются активные центры определенной формы, с которыми будут взаимодействовать головки мио- зина.
Тропомиозин в состоянии покоя, т.е. когда мышца расслаблена, пространственно препятствует взаимодействию головок миозина с активными центрами актина.
В цитоплазме миоцита имеется обильная саркоплазматическая сеть - саркоплазматический ретикулум (СПР).
Саркоплазматический ретикулум имеет вид канальцев, идущих вдоль миофибрилл и анастомозирующих друг с другом. В каждом саркомере саркоплазматический ретикулум образует расширенные участки - концевые
цистерны.
Между двумя концевыми цистернами располагается Т-трубочка. Трубочки представляют собой впячивание цитоплазматической мембраны кардиомиоцита.
Две концевых цистерны и Т-трубочка называются триадой.
Триада обеспечивает процесс сопряжения процессов возбуждения и торможения (электромеханическое сопряжение). СПР выполняет роль «депо» кальция.
В мембране саркоплазматического ретикулума имеется кальциевая АТФаза, которая обеспечивает транспорт кальция из цитозоля в концевые цистерны и тем самым поддерживает уровень ионов кальция в цитотоплазме на низком уровне.

В концевых цистернах СПР кардиомиоцитов содержатся низкомолекулярные фосфопротеины, связывающие кальций.
Кроме того, в мембранах концевых цистерн имеются кальциевые каналы, ассоциированные с рецепторами риано- дина, которые также есть в мембранах СПР.
Сокращение мышц.
При возбуждении кардиомиоцита, при значении ПМ -40 мв, открываются потенциалзависимые кальциевые каналы цитоплазматической мембраны.
Это повышает уровень ионизированного кальция в цитоплазме клетки.
Наличие Т-трубочек обеспечивает увеличение уровня кальция непосредственно в область концевых цистерн
СПР.
Это увеличение уровня ионов кальция в области концевых цистерн СПР называют триггерным, так как они (не- большие триггерные порции кальция) активируют рианоди-новые рецепторы, ассоциированные с кальциевыми каналами мембраны СПР кардиомиоцитов.
Активация рианодиновых рецепторов повышает проницаемость кальциевых каналов концевых цистерн СПР. Это формирует выходящий кальциевый ток по градиенту концентрации, т.е. из СПР в цитозоль в область концевых цистерн СПР.
При этом из СПР в цитозоль переходит в десятки раз больше кальция, чем приходит в кардиомиоцит из вне (в виде триггерных порций).
Сокращение мышц возникает тогда, когда в районе нитей актина и миозина создается избыток ионов кальция.
При этом ионы кальция начинают взаимодействовать с молекулами тропонина. Возникает тропонин-
кальциевый комплекс. В результате молекула тропонина меняет свою конфигурацию, причем меняет таким образом, что тропонин сдвигает молекулу тропомиозина в желобке. Перемещение молекул тропомиозина делает доступными центры актина для головок миозина.
Это создает условия для взаимодействия актина и миозина. При взаимодействии головок миозина с центрами актина на короткий момент формируются мостики.
Это создает все условия для гребкового движения (мостики, наличие шарнирных участков в молекуле миозина,
АТФ-азная активность головок миозина). Происходит смещение нити актина и миозина относительно друг друга.
Одно гребковое движение дает смещение на 1% длины, 50 гребковых движений обеспечивают полное укорочение мышц.
Процесс расслабления саркомеров достаточно сложен. Он обеспечивается удалением избытка кальция в концевые цистерны саркоплазматического ретикулума. Это активный процесс, требующий определенных затрат энергии. В мембранах цистерн саркоплазматического ретикулума имеются необходимые транспортные системы.
Так представляется мышечное сокращение с позиций теории скольжения. Суть ее заключается в том, что при сокращении мышечного волокна не происходит истинного укорочения нитей актина и миозина, а происходит их
скольжение относительно друг друга.
Электромеханическое сопряжение.
Мембрана мышечного волокна имеет вертикальные углубления, которые располагаются в районе нахождения сар-коплазматического ретикулума. Эти углубления получили название Т-системы (Т-трубочки). Возбуждение, которое возникает в мышце, осуществляется обычным путем, т.е. за счет входящего натриевого тока.
Параллельно открываются кальциевые каналы. Наличие Т-систем обеспечивает увеличение концентрации кальция непосредственно около концевых цистерн СПР. Увеличение кальция в области концевых цистерн активирует рианодиновые рецепторы, что повышает проницаемость кальциевых каналов концевых цистерн СПР.
Обычно концентрация кальция (Са
++
) в цитоплазме равна 10" г/л. При этом в районе сократительных белков
(актина и миозина) концентрация кальция (Са
++
) становится равной ,10


6
г/л (т.е. возрастает в 100 раз). Это и запускает процесс сокращения.
Т-системы, обеспечивающие быстрое появление кальция в области концевых цистерн саркоплазматического ретикулума, обеспечивают и электромеханическое сопряжение (т.е. связь между возбуждением и сокращением).
Насосная (нагнетательная) функция сердца реализуется за счет сердечного цикла. Сердечный цикл складывается из двух процессов: сокращения (систолы) и расслабления (диастолы). Различают систолу и диастолу желудочков и предсердий.
Давление в полостях сердца в различные фазы сердечного цикла (мм рт. ст.).
Фаза
Правое
предсердие
Правый
желудочек
Левое предсердие
Левый желудочек
Систола предсердий
4-5
0
5-7
0
Систола желудочков
0
30
0
120
Общая пауза
0
0
0
0

Систола желудочков (0,35 сек).
Период напряжения (0,1 сек).
Состоит из двух фаз: фазы асинхронного сокращения и фазы изометрического сокращения.
1.
Фаза асинхронного сокращения - 0,05 сек.
Отсутствие слитного сокращения кардиомио-цитов желудочков, разрозненное изменение напряжения отдельных мышечных волокон, давление в полостях желудочков в эту фазу практически не изменяется.
2. Фаза изометрического сокращения - 0,05 сек. Эта фаза начинается с момента охвата возбуждением желудочков. При этом атриовентрикулярные клапаны завершили процесс закрытия, аортальные клапаны еще не открывались.
Вследствие слитного сокращения мускулатуры желудочков:
• существенно повышается давление в их полостях (до величин в отводящих сосудах: 15-20 мм рт.ст. в правом желудочке и 80 мм рт.ст. - в левом желудочке);
• значительно повышается тонус мышечных волокон при постоянной их длине, так как кровь, заполняющая желудочки, как и любая жидкость, несжимаема.
Период изгнания (0,25 сек):
Состоит из двух фаз: фазы быстрого изгнания и фазы медленного изгнания. Формирует ударный (систолический) объем крови.
Понятие об ударном (систолическом) объеме крови - количество крови, которое нагнетается каждым желудочком в магистральный сосуд (аорту или легочную артерию) при одном сокращении сердца.
1. Фаза быстрого изгнания - 0Д2 сек.
Вследствие большого перепада давления между полостями желудочков и отводящими сосудами в эту фазу изгоняется до 70% от ударного (систолического) объема.
2. Фаза медленного изгнания - 0,13 сек.
Изгоняются 30% У О. Формируется конечноси-столический объем.
Понятие о конечносистолическом объеме желудочков (резервный объем) (КСО) - объем желудочка при за- вершении систолы.
Протодиастолический период - 0,05 сек.
Предшествует диастоле (в этот момент на ЭКГ регистрируется зубец Т, характеризующий восстановление поляр- ности кардиомиоцитов, характерной для ПП).
Диастола желудочков (0,60 сек).
Состоит из фазы изометрического наполнения и периода изгнания.
Фаза изометрического расслабления - 0,10 сек.
Длится до того момента, когда давление в полостях желудочков упадет ниже давления крови в предсердиях.
Период наполнения - 0,5 сек.
Состоит из фазы быстрого наполнения, фазы медленного наполнения и фазы дополнительного наполнения.
1. Фаза быстрого наполнения - 0,2 сек.
Вследствие того, что во время систолы желудочков в предсердиях давление крови последовательно возрастало вследствие постоянного венозного притока, сразу после открытия атриовентрикулярных клапанов кровь под давлением устремляется в желудочки.
2. Фаза медленного наполнения - 0,2 сек.
Из-за постепенного выравнивания давления процесс пассивного наполнения замедляется.
3. Фаза дополнительного наполнения желудочков О, 1 сек.
Обеспечивается систолой предсердий. При этом активно нагнетается последняя порция крови (5-10 % от УО), формируется конечнодиастоличе-ский объем (КДО)- объем желудочка в конце диастолы отражает наполнение сердца кровью.
53. Оценка нагнетательной (насосной) функции сердца…
Сердечный цикл
Насосная/ нагнетательная/ функция сердца реализуется за счет сердечного цикла. Сердечный цикл складывается из 2 процессов: сокращения (систолы) и расслабления (диастолы). Различают систолу и диастолу желудочков и предсердий.
Продолжительность фаз цикла при условной его длительности 1 сек
(60 ударов/мин.) Рисунок
Систола желудочков (0,35 сек)
Период напряжения (0,1 сек):
1. Фаза асинхронного сокращения - 0,05 сек. (нет слитного сокращения желудочков, давление в полостях желу- дочков практически не изменяется).
2. Фаза изометрического сокращения - 0,05 сек. (вследствие слитного сокращения мускулатуры желудочков существенно повышается давление в их полостях (до величин в отводящих сосудах: 15-20 мм рт. ст. в правом желудочке и 80 - в левом); значительно повышается тонус при постоянной длине мышечных волокон, т.к. кровь, заполняющая желудочки, как и любая жидкость, несжимаема).
1   ...   11   12   13   14   15   16   17   18   ...   33


написать администратору сайта