1. Характеристика предприятия электрических сетей как объекта исследования
Скачать 264.41 Kb.
|
Содержание Введение 1. Характеристика предприятия электрических сетей как объекта исследования 1.1 Экономико – географическая характеристика района 1.2 Конструктивно параметрическая характеристика объекта 1.3 Описание основного оборудования и характеристика элементов схемы замещения 2. Характеристика задачи расчета, анализа и оптимизации режимов РЭС 110-35 кВ по напряжению, реактивной мощности и коэффициентам трансформации 2.1 Математическая постановка задачи расчета установившихся режимов 2.2 Методы решения УУР 2.3 Общая характеристика и математическая постановка задачи оптимизации электрических режимов 2.4 Описание метода оптимизации 3. Расчет и анализ характерных установившихся режимов ШРЭС 3.1 Характеристика ПВК расчета установившегося режима и его оптимизации 3.1.1 Характеристика ПВК "RASTR" 3.2 Анализ характерных электрических режимов 3.2.1 Анализ зимнего периода 4. Учет качества электрической энергии при расчетах с потребителями 5. Безопасность и экологичность проекта 5.1 Организация управления безопасности жизни деятельности и охраны окружающей среды на предприятии 5.2 Анализ опасностей и условий поражений при эксплуатации и ремонте ЛЭП 110 кВ 5.3 Защитные меры и средства, обеспечивающие недоступность токоведущих частей 5.4 Средства и меры безопасности при случайном появлении напряжения на металлической опоре и шагового напряжения 5.5 Организационные и технические мероприятия при ремонтно-наладочных работах на ВЛ 110 кВ 5.6 Пожарная безопасность 5.7 Экологичность проекта Список использованных источников Введение Оптимизация режимов работы Шарыповских электрических сетей по напряжению и коэффициентам трансформации с минимизацией потерь мощности и электроэнергии. В электрических сетях при передаче электроэнергии (ЭЭ) от источников к потребителям часть ее неизбежно расходуется на нагрев проводников, создание электромагнитных полей и прочие эффекты. Потери электроэнергии (их техническая величина и коммерческие потери) зависят от параметров режима и схемы электрической сети, определяются несовершенством системы учета, неравномерностью оплаты, хищениями и т.д. Решению задачи снижения потерь ЭЭ посвящено значительное количество работ, рассматривающих различные аспекты данной проблемы. Снижение технической величины потерь ЭЭ (оптимизация режимов работы по активной и реактивной мощности) является сложной инженерно-технической задачей, решение которой требует наличия прикладного математического обеспечения. Сложность применяемых алгоритмов, значительный объем исходных данных приводят к необходимости раздельного рассмотрения задачи оптимального распределения активных и реактивных мощностей. Кроме указанных причин, разделению задачи оптимизации способствует то, что влияние активных мощностей электростанций на распределение реактивных весьма значительно, а обратное относительно невелико. Этим оправдывается практическое решение задачи оптимизации режимов по напряжению, реактивной мощности и коэффициентам трансформации как задачи "дооптимизации" режима при заданном распределении активных мощностей. В соответствии со структурой и принципами оперативного управления энергосистемой соответствующие подразделения занимаются оптимизацией режимов работы системы на своих уровнях, причем выработанные задания передаются на более низкий уровень как обязательные для него требования к режиму или наложенные на режим ограничения. Оптимизация режима в целом достигается при строгом соблюдении "принципа оптимальности", в соответствии с которым задания, полученные от более высокого уровня системы, реализуются при обеспечении оптимального режима на данном уровне. Преимущество разделения задачи можно видеть с позиций информационной и аппаратной. Вследствие высокой сложности сетей подробный расчет оптимального режима, рассматривающий каждый источник и каждое средство регулирования, значительно трудоемок и трудно реализуем. Кроме того, сбор информации о энергосистеме и ее концентрация в одном месте сопряжены с немалыми затратами. Отмеченная сложность задач как оптимизации по "всем переменным" так и оптимизация режимов по напряжению, реактивной мощности и коэффициентам трансформации приводит к невозможности оптимального управления режимами, без использования прикладного математического обеспечения, даже опытным диспетчерским персоналом. Этому также способствует невозможность получения в режиме реального времени достоверных сведений о потерях мощности. Рассматриваемой задаче оптимизации режимов по напряжению, реактивной мощности и коэффициентам трансформации посвящена значительная часть работ, ряд из которых были реализованы в программно-вычислительных комплексах. Для решения поставленной задачи применен программно-вычислительных комплекс "Rastr". Целью данной работы является снижение потерь электроэнергии. Ожидается, что после реализации предложенных мероприятий оно составит 10-15%, а это приведет к значительному экономическому эффекту и в конечном счете снижению цены единицы продукции, отпущенной потребителю. Реализация комплекса мероприятий, полученных при решении задачи оптимизации, не потребует от предприятия электрических сетей (ПЭС) дополнительных капитальных вложений. Учитывая это, необходимо отметить, высокую экономическую эффективность применения результатов данной работы на практике. Сложность решаемой задачи приводит к тому, что при непосредственном применении используемых комплексов невозможно в полной мере решить задачу оптимизации по напряжению, реактивной мощности и коэффициентам трансформации. Поэтому в данной работе применяется метод раздельной оптимизации режима. Решение задачи проходит в три этапа: снижение влияния неоднородностей замкнутых частей сети (определение оптимальных точек размыкания в сети 35 кВ), оптимальное распределение реактивной мощности между источниками внутри сети, регулирование уровня напряжения в сети. Такой подход к решению задачи оптимизации режимов по напряжению, реактивной мощности и коэффициентам трансформации приводит к значительному повышению эффекта оптимизации. Отметим, что полученные предварительные результаты расчетного анализа являются несколько идеализированными, так как практически трудно реализовать полный объем рекомендуемых оптимизационных мероприятий, вследствие чего ожидаемый эффект будет несколько меньше теоретического. Однако даже частичное выполнение предложенных мероприятий приведет к значительной экономии электроэнергии. Для более полного согласования теоретических результатов и практической реализации полученных рекомендаций необходима информация о графиках изменениях напряжения на шинах питающих подстанций. Основные потери мощности в рассматриваемых сетях сосредоточены в линиях 110 кВ, поэтому наибольший эффект оптимизации ожидается при регулировании уровня напряжения. В связи с этим результаты оптимизации в большей мере зависят от взаимодействия и согласованной работы ШРЭС со смежными предприятиями электрических сетей. Важными практическими результатами данной работы является выработка рекомендаций и мероприятий по оптимизации режимов сетевого предприятия с целью снижения потерь мощности и электроэнергии и улучшения ее качества. 1 Характеристика предприятия электрических сетей как объекта исследования 1.1 Экономико – географическая характеристика района Шарыповкий район находится в южной части Красноярского края и граничит с Ужурским районом, Балахтинским районом, Новоселовским районом, Кемеровской областью и республикой Хакассия. Город Шарыпово находится на западе Красноярского края, в 320 км от краевого центра. Город расположен в Назаровской котловине, окруженной с востока плавными невысокими отрогами Восточного Саяна, с запада – крутыми хребтами Кузнецкого Алатау. Он находится на высоте 320 – 350 м над уровнем моря и лежит на одной широте с Москвой. Шарыпово является административным центром КАТЭКа – Канско-Ачинского топливно-энергетического комплекса. Это город строителей, угольщиков, энергетиков. Статус города, преобразованного из старинного села Шарыпово, он получил 31 июля 1981 года. Главное природное богатство, благодаря которому горд получил рождение – бурый уголь Березовского месторождения, являющимся одним из крупнейших Канско-Ачинского буроугольного бассейна. Город Шарыпово и окружающий его Шарыповский район как две самостоятельные административно-территориальные единицы занимают пространство в четыре тысячи квадратных километров. Шарыповский район лежит на стыке Западно-Сибирской равнины, Среднесибирского плоскогорья и гор Южной Сибири, поэтому имеет сложное геологическое строение и рельеф. Здесь соседствуют предгорные равнины, отроги Кузнецкого Алатау и Восточного Саяна, межгорные впадины (Назаровская, Чебаково-Балахтинская котловина), низкогорные кряжи Южно-Енсейский, Арга, Солгон. Район находится в центре евроазиатского материка, вдали от морей и океанов. Территория относится к бассейнам крупнейших рек страны – Енисея и Оби, другие крупные реки – Чулым, Кия, Кан, Бирюса. Регион обладает уникальной природой, несчетным количеством озер и речек, полезными ископаемыми, многочисленными памятниками культур прошлого. Район характеризуется резко континентальным климатом с жарким летом и холодной зимой. Среднегодовая температура воздуха составляет -0,3°С со среднемесячными значениями наиболее холодного месяца (январь) -16,6°С. Наиболее теплого месяца (июль) +17,8°С. Минимальная температура в январе составляет -43°С, в июле +7°С. Максимальная температура в июле составляет +38°С, в январе +10°С. Продолжительность безморозного периода 100 – 120 дней. Данный район имеет невысокое среднегодовое количество осадков, которое составляет 512 мм. Территория находится на стыке двух промышленно развитых районов: Красноярского и Кузбасса. С севера на юг район пересекает железнодорожная линия Ачинск - Красная Сопка – Ужур - Абакан, дающая выход к Транссибирской и Южно-Сибирской магистрали. Указанная железнодорожная линия и ее тупиковые ответвления Красная Сопка – Шушь – Базыр и Шушь – Кия-Шалтырь однопутные, оборудованы полуавтоматической блокировкой и обслуживаются тепловозной тягой. Ближайшими к объектам КАТЭКа железнодорожными станциями являются промежуточные станции Шарыпово и Дубинино Красноярской железной дороги. Район характеризуется сравнительно слаборазвитой сетью существующих автодорог, из которых ближайшими автодорогами областного значения являются автодороги Ачинск – Назарово – Ужур, Красная Сопка – Березовская. КАТЭК – это 600 млн тонн бурого угля, размещенных на 60 тысячах кв.км. Угольные пласты залегают на незначительной глубине, порой в 15-20 метрах от поверхности. Все месторождения Канско-Ачинского бассейна находятся в центре Красноярского края, их насчитывается 24. Мощность угольных пластов от 20 до 100 метров. На КАТЭКе имеются все возможности для создания самых эффективных ГРЭС. Строительство Березовской ГРЭС развернулось на месте, где стояла деревня Кадат, которая входила в Шарыповский район. Для грэс создано Берешское водохранилище (пруд – охладитель), с площадью водного зеркала 30 кв. км и объемом воды – 200 млн. кубометров. С его помощью водоснабжение на ГРЭС осуществляется по оборотной схеме. 1.2 Конструктивно параметрическая характеристика объекта Филиал "КАТЭКэлектросеть" - один из самых молодых в составе ОАО "Красноярскэнерго". Его создание в составе Красноярскэнерго было определено приказом Минэнерго СССР №296 от 22.08.80г. Предприятие было организовано для энергоснабжения Южного промышленного узла КАТЭКа и выделено из состава Западных электрических сетей приказом РЭУ Красноярскэнерго №158 от 03.10.80г. От этой даты и ведется начало истории КАТЭКэлектросеть. Организация КАТЭКэлектросетей обусловлена необходимостью повышения надежности электроснабжения потребителей Канско-Ачинского энергетического комплекса. Зона обслуживания КАТЭКэлектросетей включает Шарыповский, Ужурский, Балахтинский и Новоселовский административные районы. Центр предприятия находится в городе Шарыпово. В 1981 году был организован Шарыповский РЭС для решения проблем, которые встали перед строителями КАТЭКа: это строительство и эксплуатация объектов промышленных площадок Березовской ГРЭС-1, разреза "Березовский" и города Шарыпово. В этом же году от БГРЭС-1 переданы функции заказчика по строительству ПС "Итатская"-1150/500/220 кВ и в сентябре была введена первая очередь подстанции 110/10 кВ. В 1997 году ПС "Итатская" была передана в состав Красноярского предприятия межсистемных электрических сетей. В 1986 году создается Новоселовский РЭС, который и завершил создание производственной структурной схемы предприятия. В Ужурские РЭС (УРЭС) входят: количество подстанций 35-220 кВ – 9 шт.; ТП 10/0,4 кВ – 314 шт.; общая протяженность линий электропередач – 1701 км (по трассе), в т.ч. протяженность ВЛ 0,4-10 кВ – 1258 км, ВЛ 35-220 кВ – 443 км. В Балахтинские РЭС (БРЭС) входят: количество подстанций 35-110 кВ – 12 шт.; ТП 10/0,4 кВ – 353 шт.; общая протяженность линий электропередач – 1916 км (по трассе), в т.ч. протяженность ВЛ 0,4-10 кВ – 1372 км, ВЛ 35-220 кВ – 544 км. В Новоселовские РЭС (НРЭС). В настоящее время в зону обслуживания НРЭС входят: количество подстанций 35-110 кВ – 8 шт.; ТП 10/0,4 кВ – 194 шт.; общая протяженность линий электропередач – 1141 км (по трассе), в т.ч. протяженность ВЛ 0,4-10 кВ – 690 км. В Шарыповские РЭС (ШРЭС): В настоящее время в зону обслуживания ШРЭС входят: количество подстанций 35-220 кВ – 12 шт.; общая протяженность линий электропередач – 1141 км (по трассе), в т.ч. протяженность ВЛ 0,4-10 кВ – 832 км. Обеспечение электроэнергией потребителей Красноярского края, входящих в зону действия предприятия "КАТЭКэлектросети" осуществляется от подстанции 220/110 кВ Шарыповская с двумя АТ по 125 мВА, БУР-1 (Березовский угольный разрез №1) с двумя АТ по 125 мВА, Ужур с двумя АТ по 63 мВА. Подстанция Шарыповская и БУР-1 по ВЛ-220 (Итатская – Шарыповская - БУР-1) присоединены к линиям 220 кВ подстанции 1150/500/220 кВ Итатская Красноярской энергосистемы. Подстанция 220/110 кВ Ужур присоединена к ВЛ-220 кВ Назаровская ГРЭС – Абакан районная. По состоянию на 01.01.91г. электроснабжение сельскохозяйственных потребителей в зоне КАТЭКсеть осуществлялось от 33 подстанций 35-110 кВ, из которых 21 ПС 110-220 кВ и 12 ПС 35/10 кВ. Из общего количества подстанций 35_110 кВ 27 ПС общей мощностью 278 тыс. кВ·А сельскохозяйственного назначения. Из общего количества подстанций 32 ПС (97%) имеют два трансформатора и 28 ПС имеют двухстороннее питание. На 26 подстанциях установлены трансформаторы с автоматическим регулированием напряжения под нагрузкой (АРПН). На пяти подстанциях установлены по одному трансформатору, а на семи подстанциях установлены трансформаторы без регулирования напряжения под нагрузкой. Сети сельскохозяйственного назначения имеют недостаточную надежность, т.к. 20% подстанций имеют одностороннее питание. Кроме того, пропускная способность сетей недостаточна для пропуска мощности, обусловленной внедрением электроснабжения в сельскохозяйственном производстве и в быту сельского населения. 1.3 Описание основного оборудования и характеристика элементов схемы замещения Расчету установившихся режимов электрической сети предшествует составление ее схемы замещения. Она получается в результате объединения схем замещения отдельных элементов в соответствии с принципиальной схемой электрических соединений. Необходимо выбрать схему замещения каждого элемента и рассчитать ее параметры. В качестве схемы замещения линий используем П-образную схему замещения с сосредоточенными сопротивлениями и разнесенными по концам линии проводимостями. Параметры схемы замещения ЛЭП можно также определить используя справочные данные /1/ или аналитические выражения. Удельное активное сопротивление ЛЭП, Ом/км, определим из выражения , где ρ – удельное активное сопротивление алюминия, мм2/км; F – сечение провода, мм. Удельное индуктивное сопротивление ЛЭП, Ом/км, определяется по формуле вида , где Dср – среднегеометрическое расстояние между фазами, м; rпр – радиус провода, мм; μ=1 – магнитная проницаемость алюминия. Среднегеометрическое расстояние между фазами, м, , где – расстояния между проводами отдельных фаз, м. Удельная емкостная проводимость, См/км, . Параметры схемы замещения ЛЭП определяются из выражений вида , , где ZЛЭП – комплексное сопротивление ЛЭП, Ом; RЛЭП – активное сопротивление ЛЭП, Ом XЛЭП – индуктивное сопротивление ЛЭП, Ом Bс – емкостное сопротивление ЛЭП, См lЛЭП – длинна ЛЭП, км. Параметры ЛЭП Восточных сетей сведены в таблицу 1.1. Таблица 1.1 – Параметры ЛЭП эксплуатируемых ШРЭС
Двухобмоточные трансформаторы представляются в виде однолучевых Г-образных схем замещения. Типы трансформаторов установленных на подстанциях предприятия "КАТЭКэлектросеть" и их паспортные данные приведены в таблице 1.2. Параметры схемы замещения можно определить используя справочные данные /2/, или используя аналитические выражения. Активное сопротивление трансформатора, Ом, определим по формуле |