Биохимия. Ответы на экзаменационные вопросы. 1. Источники ак и пути их использования. Аминокислоты
Скачать 295 Kb.
|
CjP Инсулиновая недостаточность приводит к сахарному диабету. Может быть 2 причины сахарного диабета:!.Абсолютная недостаточность инсулина. В этом случае концентрация инсулина в крови ниже нормы. Это может быть связано либо с повреждением островковой ткани железы, либо с истощением запасов инсулина, либо с ускоренным его разрушением .2 .Относительная недостаточность возникает в результате снижения числа рецепторов к инсулину, или снижения их чувствительности.Различают инсулинзависимый (юношеский, ювенильный) и инсулиннезависимый (стабильный) сахарный диабет. При инсулинзависимом диабете наблюдается абсолютная недостаточность инсулина, и жизнь больных зависит от инъекции инсулина.При инсулиннезависимом диабете наблюдается относительная недостаточность инсулина, поддержание глюкозы на нормальном уровне достигается сахаропонижающими средствами, инъекции инсулина не требуются.Сахарный диабет приводит к нарушению всех видов обмена.Нарушение обмена углеводов.!, гипергликемия, которая возникает в результате: а) снижения проницаемости клеточных мембран для глюкозы. Глюкоза накапливается в крови, б) усиление процессов поставляющих глюкозу в кровь (распад гликогена печени, ГНГ)В) торможение процессов потребляющих глюкозу (синтез гликогена, гликолиз ПФП) В норме концентрация глюкозы в крови 3,3 - 5,5 ммоль/л, при сахарном деабете 6,7 ммоль/л и выше, при 8,9 возникает глюкозурия.2. заторможен ПФП. В результате этого снижено образование НАДФН, что приводит к катаракте.З.Гипергликемия вызывает неферментативное гликозилирование белков, в том числе белков клеточных мембран всех органов и систем, в первую очередь сосудов. Возникают микроангиопатии. Нарушение обмена липидов. 1. усиливается липолиз, в крови повышается концентрация НЭЖК. Больные худнют.2. усиливается окисление жирных кислот и образование ацетил-КоАЗ. возрастает синтез кетоновых тел, их накопление приводит к метаболическому ацидозу.4. возрастает синтез холестерина, риск развития атеросклероза. 5. увеличивается содержание атерогенных липопротеидов.6. усиливается перекисное окисление липидов. Нарушение обмена белков. 1. увеличивается синтез гликопротеидов_2. усиливается распад белков, синтез мочевины, возрастает остаточный азот. Осложнение при сахарном диабете. 1 .Полиурия и полидипсия. 2.Диабетическая кома. Признаки: гипергликемия (14-16 ммоль/л), резкое увеличение содержания кетоновых тел, повышение уровня холестерина, ЛПНП, рН крови сдвигается до 6,8. Это приводит к снижению связанности инсулина с рецептором.З.Ангиопатии (микро- и макро -). Микроангиопатия сосудов сетчатки глаза снижает остроту зрения, микроангиопатия сосудов почек приводит к тяжелой почечной недостаточности. Макроангиопатия — нарушение крупных сосудов —характеризуется атеросклерозом, поражением сосудов нижних конечностей._4.Гиперосмолярная кома возникает при концентрации глюкозы в крови 50-60 ммоль/л. В результате повышается осмотическое давление крови, что приводит к обезвоживанию организма.5. Гипогликемическая кома может возникнуть при передозировке инсулина^ Диагностика сахарного диабета Различают: преддиабет, латентный диабет и явный диабет (легкий и тяжелый).Наличие диабета определяют по содержанию глюкозы в крови. Для диагностики сопутствующих заболеваний определяют содержание холестерина, ЛПНП (наличие атеросклероза), сиа-ловых кислот (наличие воспаления), кетоновых тел (диабетическая кома).При латентном диабете проводят пробу с сахарной нагрузкой. Б-28 1. Пути образования ацетил-КоА 1 . Из пирувата в ходе пируватдегидрогеназной реакции. Этот путь преобладает при кратковременной и напряженной мышечной работе.2. р-окисл Ж.К. преобладает при длительной мышечной работе, холоде, голоде, беременности, сахарном диабете. Пути использования ацетил-КоА: окисляется в цикле Кребса, используется в синтезе ЖК и идет на синтез холестерина и кетоновых тел. Путь использования ацетил-КоА зависит от энергообеспе- ченности и потребности организма в этих веществах.Значение кетоновых тел:Кетоновыми тела: ацетдацетат, р-гидроксибутират и ацетон. Кетоновые тела образуются в печени и выполняют следующие функции: 1. Энергетическая. Скелетная и сердечная мышцы, мозг и др внепеченочные ткани обеспечивают энергетические потребности за счет катаболизма кетоновых тел. Печень не может окислять кетоновые тела.2.необходимы для образования миелиновых оболочек нервов и белого вещества головного мозга. Накопление кетоновых тел в организме называется кетозом.В норме в крови кол-во КТ 1-3 мг, в моче 40мг При сахарном диабете 10-50 мг в моче. •^2)Соматотропный гормон, глнжагон и др. пептидные гормоны. Биологическое значение. Гипоталамус: либерины, статины, АДГ, окситоцин, энкефалины, эндорфины (оказывают успокаивающие действие, регуляция процессов сна и бодрствования) Гипофиз: СТГ, ГТГ, ТТГ, ЛГ, пролактин.Щитовидная железа: тиреокальцийтонин Паращитовидная железа: паратгормон. Тимус: тимозин (стимулирует синтез Т-лимфоцитов). Поджелудочная железа: а-клетки: глюкагон; Р-клетки: инсулин. Соматотропный гормон. Вырабатывается в аденогипофизе. По составу простой белок. Биологическое значение: повышает биосинтез белка, активирует липолиз, повышает уровень глюкозы в крови через активацию глюкагона.Глюкагон. Синтезируется а-клетками поджелудочной железы. Состоит из 29 АК.Биологическое значение: повышает распад гликогена, активирует глюконеогенез, липолиз, повышает распад белка.Инсулин. Синтезируется ; р-клетками поджелудочной железы. Состоит из 51 АК, 2 полипептидных цепочек, 2 дисульфидных мостиков.Биологическое значение: стимулирует утилизацию глюкозы, стимулирует гликолиз, пентозо-фосфатный путь, синтез гликогена. Б-31 Л?)Гемоглобин относится к хромопротеидам. Состоит из белка глобина и простетической группы. Тлобин — тетрамер, образованный двумя а- и двумя р-полипеп-тидными цепями. Гем содержит 4 пиррольных кольца, соединенных метановыми мостиками, 4 метальных группы, 2 винильных радикала, 2 остатка пропионовой кислоты и двухвалентное железо, которое присоединено к азотам пиррольных колец. Гем присоединяется к гистидиновому остатку глобина. Для образования гема требуются: железо, глицин, сукцинил-КоА, витамины В6, В12 и фолиевая кислота.Гем является регулятором синтеза полипептидных цепей глобина. Распад гемоглобина: Гемоглобин окисляется в метгемоглобин (Fe3+). —> вердогло-бин (кольцевая структура гема разрывается). —> биливердин (отщепление глобина, железо уходит с помошью трансферина. —^свободный билирубин + альбумин —> в печень. Билирубин (фермент УДФ-глюкуро-нилтрансфераза) + с глюкуроновой кислотой—» связанный билирубин - глюкуроновая кислота—»ЖКТ и почки—» ме-зобилиноген всасывается в тонком кишечнике —> печень, где уробилиноген необратимо разрушается до моно- и дипирролов. В толстом кишечнике мезобилиноген восстанавливается анаэробными бактериями до стеркобилиногена. Гемолитическая желтуха —при массивном внутрисосудистом или тканевом распаде эритроцитов (переливание несовместимой по группе и резус-фактору крови и т.д.). Паренхиматозная желтуха возникает вследствие повреждения клеток печени (вирусами, токсическими гепатотроп-ными соединениями, при циррозах). Механическая желтуха возникает при нарушении оттока желчи в кишечник (желчно — каменная болезнь, опухоль головки поджелудочной железы). Физиологическая желтуха новорожденных. У плода и у новорожденного количество эритроцитов и содержание гемоглобина в эритроцитах в расчете на единицу массы тела больше, чем у взрослых. В течение нескольких недель после рождения количество гемоглобина в крови новорожденного приближается к величине, характерной для взрослых. В этот период относительная скорость распада эритроцитов больше, чем в последующее время. В то же время имеется возрастной недостаток фермента конъюгации билирубина — глюкуронилтрансферазы, что приводит к повышению свободного билирубина в крови. Гемолитическая болезнь новорожденных развивается при резус-конфликте или при несовместимости по группе крови матери и плода, у резус-отрицательных матерей, беременных резус-положительным плодом. 1). Активный центр представляет собой аминокислотные остатки, функциональные группа которых обеспечивают связывание с субстратом и аминокислотные остатки функциональные группы которых обеспечивают химическое превращение субстрата.2. В начале фермент взаимод-ет с субстратом с обр-ем фермент субстратного комплекса. Энергия активации этой стадии невелика и комплекс об-ся быстро. На 2 стадии происх обр-е продукта, энергия активации невелика и переходное состояние фермент субстратного комплекса достигается быстро.Этот мех-м обеспечивается след факторами: сближение и ориентация реакционного центра субстрата от каталитической группы фермента; напряжение и деформация как субстрата так и фермента приводящая к ув энергии фермент субст компл, что делает невыгодно его существование. Кислотно основной и ковалетный катализ. З.Вещ-ва которые изменяют активность ферментов наз-ся регуляторами 2 типа: активаторы, ингибиторы. Необр-ые ингиботоры прочно связ-ся с ферментами при этом свозываются или разр-ся функциональные группы необх для прояв каталитич активности. Необ ингибиторы явл-ся ферментными ядами. Обратимые инг действуют не долго. Обратим делятся на конкурентные и неконкурентные: конкурентный (похож на субстрат по стр-ре и форме поэтому может конкурировать с ним за место в активном центре, степень ингибирования зависит от концентр субстрата и ингибитора, чем больше конц ингибитора тем сильн игибирование), неконкурентые (стр-но не похожи на субстрат поэтому действ вне активн центра, св-ся с фермент субстрата комплексом обр-я не активные комплекс в следствии чего происх изменение конформация молекулы фермента, нар-ся взаимод-е субстрата с акт центром что привод к снижению активности фермента) 4. многие лекарств преператы оказ свое терапевтическое действия по мех-му конкурентного ингибирования Н/р четвертичние амминивые основания ингибируют ацетилхолинэстеразу, катализирующую реак-ию гидролиза ацетил холина на холин и уксусную кислоту вследствии ув конц ацетилхолина в следствии чего усилив проведение нервного импульса. Б-33 ,1 .^Источники аммиака и пути его обезвреживания Образуется 1 .В результате реакций дезаминирования:-аминокислот; -биогенных аминов; -пуриновых и пиримидиновых азотистых оснований; -амидов аминокислот в тканях организма. 2.Часть в кишечнике в результате деятельности микрофлоры (гниение белков).Всасывается в кровь воротной вены. Содержание аммиака в крови в норме 25-40 мкмоль/л.Биосинтез мочевиныАктив: катехоламины, ГКС, тяжнлая мышечная работа, голодание. Гипераммонемия- повышенное содержание аммония. Причины: генетический дефекты ферментов орнитинового цикла в печени, вторичное поражение печени в результате цирроза, гепатита и др. Симптомы тошнота, рвота, головокружение, судороги, потеря сознания, отек мозга, отставание умственного развития. Норма содержания аммония в крови 60 мкмоль/л. Лечение мало белковые диеты, введение кетоаналогов аминокислот в рацион и стимуляция выведения аммония в обход нарушенных реакций(путем связывания и выведения NH3 в составе фенилацетилглутамина и гиппуровой кислоты; повышением концентрации промежуточных метаболитов цикла(аргенина, цитруллина, глутамата)). Ь ч2уСоматотропный гормон, глюкагон и др. пептидные гормоны. Биологическое значение. Гипоталамус: либерины, статины, АДГ, окситоцин, энкефалины, эндорфины (оказывают успокаивающие действие, регуляция процессов сна и бодрствования) Гипофиз: СТГ, ГТГ, ТТГ, ЛГ, пролактин.Щитовидная железа: тиреокальцийтонин Паращитовидная железа: паратгормон. Тимус: тимозин (стимулирует синтез Т-лимфоцитов). Поджелудочная железа: а-клетки: глюкагон; р-клетки: инсулин. Соматотропный гормон. Вырабатывается в аденогипофизе. По составу простой белок. Биологическое значение: повышает биосинтез белка, активирует липолиз, повышает уровень глюкозы в крови через активацию глюкагона.Глюкагон. Синтезируется а-клетками поджелудочной железы. Состоит из 29 АК.Биологическое значение: повышает распад гликогена, активирует глюконеогенез, липолиз, повышает распад белка.Инсулин. Синтезируется ; р-клетками поджелудочной железы. Состоит из 51 АК, 2 полипептидных цепочек, 2 дисульфидных мостиков.Биологическое значение: стимулирует утилизацию глюкозы, стимулирует гликолиз, пентозо-фосфатный путь, синтез гликогена. Б-34 1. М еханизм окислительного фосфорилирования Компоненты электрон-транспортной цепи находятся во внутренней мембране. Они расположены так, что, передавая электроны по цепи, одновременно выталкивают протоны водорода на наружную сторону мембраны в межмембранное пространство. В результате, на наружной стороне мембраны создается избыток протонов водорода, а с внутренней стороны — недостаток (отрицательный заряд). Это проявляется в возникновении мембранного электрохимического потенциала, который складывается из разности зарядов на мембране и разности рН (снаружи более кислое, внутри — более щелочное). Протоны водорода могут возвращаться в матрикс по протонным каналам, с которыми связана специфическая Н+-АТФаза (АТФ-синтетаза). Обратный ток протонов по каналам в матрикс активирует этот фермент, и он катализирует синтез АТФ из АДФ и Н3Р04. Таким образом, энергия мембран- ного поценциала преобразуется в энергию макроэргической связи АТФ. АТФ с помощью фермента транслоказы переносится из митохондрий в цитозоль, где и используется. Сопряжение в дыхательной цепи — это такое состояние, когда окисление (перенос электронов) сопровождается фосфори-лированием, то есть синтезом АТФ. Разобщение — это такое состояние дыхательной цепи, когда окисление идет, а фосфорилирование не происходит, то есть пункты фосфорилирования выключены полностью или частично. В этом случае вся или какая-то часть образующейся энергии выделяется в виде тепла. Сопряженность дыхательной цепи можно оценить по коэффициенту Р/С Коэффициент Р/О равен числу молей АТФ, образующихся из АДФ и Н3Р04, на 1 грамм-атом поглощенного кислорода. Разобщение в дыхательной цепи могут вызывать липофиль-ные вещества, которые способны переносить протоны водорода с внешней стороны внутренней мембраны митохондрий на внутреннюю, минуя АТФ-синтетазу. В результате вся энергия мембранного потенциала будет рассеиваться в виде тепла. Разобщение вызывают: 2,4-ДНФ (динитрофенол), многие яды промышленных производств, бактериальные токсины, набухание митохондрий, жирные кислоты, ионофоры (вещества, переносящие ионы через мембрану). Разобщители повышают скорость переноса электронов по дыхательной цепи и выводят ее из под контроля АТФ. Регуляция дыхательной цепи: 1 АДФ стимулирует работу дыхательной цепи. Это явление называется дыхательным контролем. 2.АТФ тормозит работу дыхательной цепи и потребление кислорода.З.Адреналин и глюкагон активируют работу дыхательной цепи. Блокаторы дыхательной цепи1. Ротенон блокирует дыхательную цепь на участке НАДН — KoQ. 2.Амитал, антимицин — на участке между цитохромами Ьи с г 3 . Цианиды и окись углерода блокируют цитохромоксидазу, при этом вся дыхательная цепь не работает. (^2) Синтез жирных кислот Происходит главным образом в жировой ткани, молочной железе и печени. Местом синтеза жирных кислот является цитоплазма. Для синтеза жирных кислот необходимы СО2, ацетил-Коа АТФ и НАДФН. Синтез жирных кислот происходит циклическм. В начале каждого цикла из ацетил-КоА и углекислого газа с затратой АТФ образуется малонил-КоА. Ход реакций смотрите'в учебнике или лекции. Для синтеза одной молекулы Cj6 потребуется 8 молекул аце-тил-КоА, (из которых 7 проходят стадию образования малонил-КоА), 7 АТФ и 14 ЕАДФН.Регуляция синтеза жирных кисло/яЛимитирующим ферментом является ацетил-КоАкарбоксилаза. Аллостерические активаторы — АТФ и цитрат, ингибиторы — жирные кислоты с длинной цепью. Инсулин, эстрогены активируют, катехоламины и стресс ингибируют синтез жирных кислот. Значение:при распаде УВ обр ацетил-Коа, который используется в синтезе ЖК, т.о. избыток УВ запасается в виде жира. Б-35
Б-36 1. Катаболизм пуриновых нуклеотидов включает реакции гидролитического отщепления фосфатного остатка, рибозного остатка и аминогруппы. В результате этих реакций из АМФ образуется гипоксантин, из ГМФ — ксантин; которые под действием ксантиноксидазы превращаются в мочевую кислоту. Образование мочевой кислоты происходит главным образом в печени. Мочевая кислота — основной продукт катаболизма пуриновых нуклеотидов у человека. В организме ежесуточно образуется 0,5 — 1 г мочевой кислоты, которая выводится через почки. Мочевая кислота плохо растворима в воде и жидких средах организма. В норме ее концентрация на пределе растворимости и составляет 0,1 — 0,4 ммоль/л. Если концентрация мочевой кислоты становится выше нормальной, происходит отложение ее солей (уратов) в суставах и почках. Повышение концентрации мочевой кислоты в крови называется гиперурикемией. Хроническое повышение уровня мочевой кислоты приводит к развитию подагры. Классическая подагра обусловлена тремя факторами — увеличенным синтезом мочевой кислоты, снижением содержания в плазме уратсвязывающего белка и замедленным выведением с мочой. Клинические проявления подагры: 1 Повторяющиеся приступы острого воспаления суставов, чаще всего мелких (подагрический криз); обычно болезнь начинается с воспаления первого плюснефалангового сустава большого пальца ноги. Подагрический криз связан с отложением кристаллов мононатриевой соли мочевой кислоты в суставе. 2. Подагрические узлы (тофусы), возникают в результате местного отложения и накопления уратов; локализация — мелкие суставы, сухожилия, хрящи, кожа. Иногда кожа над тофусом атрофируется, разрушается и из тофуса высыпается порошок, состоящий из уратов. Ураты могут откладываться и в почечных лоханках, образуя почечные камни. Для лечения подагры применяют аллопуринол — аналог ги-поксантина. Аллопуринол является конкурентным ингибитором ксантиноксидазы. Его прием снижает содержание в крови мочевой кислоты. Катаболизм пиримидиновых нуклеотидов Превращения пиримидиновых оснований в результате деза-минирования и декарбоксилирования идет до (3-аланина, углекислого газа, аммиака и (3-аминоизомасляной кислоты. (3-аланин используется для синтеза дипептидов мышц — карнозина и ан-серина — или выделяется с мочой, а также окисляется как обычный аланин. 2. Все типы липопротеинов имеют сходное строение- гидрофобное ядро и гидрофильный слой на полверхности. Гидрофильный слой образован белками,которые называют апопротеинами, и амфифильными молекулами липидов-фосфолипидами и холестеролом. Гидрофильные группы этих молекул обращены к водной фазе,а гидрофобные части- к гидрофобному ядру липопротеина,в котором находятся транспортируемые липиды. Липопротеины сыворотки крови подразделяются на отдельные классы в зависимости от электрофоретической подвижности (с белками крови) и плотности при ультрацентрифугировании. Плотность и электрофоретическая подвижность плазменных липопротеипов прямо пропорциональны содержанию белков и обратно пропорциональны содержанию триацилглицеридов. Различают хиломикроны (ХМ) содержат 1%белка и99%липидов,самые гидрофобные липопротеиды, имеют наименьшую плотность, не обладают электрофоретической подвижностью. Образуются в стенке кишечника. Являются главной формой транспорта пищевых липидов. Это самые крупные частицы. Исчезают изкровяного русла через 1 — 2 часа после еды. Метаболизируются липопротеидлипазой; липопротеины очень низкой плотности (ЛПОНП или пре-/3-липопротеины). Содержат 10% белка,90% липидов. Образуются в печени и очень мало — в тощем кишечнике, являются транспортной формой эндогенных липидов в жировую ткань, которые не попадают в жировую ткань,превращаются в кровяном русле в липопротеиды низкой плотности (ЛПНП), богатые эфирами холестерина. Это превращение катализируется липопротеидлипазой; липопротеины низкой плотности (ЛПНП или Ье1а-липопротеипы)около 25% белка и 75%липидов. Главным компонентом является холестерин (примерно50%) в виде эфиров с линолевой кислотой и фосфолипиды. У здоровых людей до 2/3 всего холестерина плазмы находится в составе ЛПНП. Они являются главным поставщиком холестерина в ткани. ЛПНП регулируют синтез холестерина de novo. Большинство ЛПНП являются продуктами расщепления ЛПОНП липопротеидлипазой. На клеточных мембранах имеются рецепторы для ЛПНП. В клетки ЛПНП проникают путем эндоцитоза; липопротеины высокой плотности (ЛПВП или а-липопротеины) 50% белков, 25% фосфолипидов, 20% эфиров холестерина и очень мало триацилглицеринов. Образуются главным образом в печени. ЛПВПобразуют комплексы с ферментом лецитинхолестеролацилтрансферазой (ЛХАТ). С помощью этого фермента свободный холестерин ЛПВП превращается в эфир (холестерид). Холестерид является гидрофобным соединением, поэтому перемещается в ядро ЛПВП. Источником жирной кислоты для этерификации холестерина является лецитин (фосфатидилхолин). ЛПВП, благодаря ЛХАТ, забирают холестерин от других липопротеидов и транспортируют его в печень, предотвращая накопление его в клетках. ЛПОНП и ЛПНП считают атерогенными, то есть вызывающими атеросклероз. ЛПВП — антитиатерогенными. Липопротеиды в крови имеются постоянно, но их концентрация меняется в зависимости от ритма питания. После приема пищи концентрация липопротеидов повышается. Повышение липопротеидов называется гиперлипопротеидемией. Главная опасность этого состояния связана с тем, что повышается вероятность возникновения атеросклероза. Вероятность заболевания тем выше, чем больше отношение ЛПНП к ЛПВП в крови. Атеросклероз -это патология, которая характеризуется отложением, главным образом, холестерина в стенке крупных сосудов (аорта, коронарные сосуды, сосуды мозга и т.д.) с образованием вначале пятен, полосок. Затем на их месте образуются утолщения (атеросклеротические бляшки). Эти липидные бляшки являются своеобразным инородным телом, вокруг которого развивается соединительная ткань, затем наступает кальцификация пораженного участка сосуда. Сосуды становятся неэластичными, плотными, ухудшается кровоснабжение ткани, а на месте бляшек могут возникать тромбы. В стенке сосудов есть два защитных механизма от избыточного отложения холестерина: Работа |