Главная страница
Навигация по странице:

  • Аллельные гены

  • Неаллельные гены

  • Комплементарное

  • Наследование признаков при полимерном взаимодействии генов.

  • Генетика пола.

  • Наследование, сцепленное с полом

  • Онтогенетическая изменчивость

  • ГЕННЫЕ МУТАЦИИ

  • Мутации без сдвига рамки считывания

  • экзамен биолог. 1 Качественные особенности живой материи


    Скачать 238.25 Kb.
    Название1 Качественные особенности живой материи
    Дата14.11.2022
    Размер238.25 Kb.
    Формат файлаdocx
    Имя файлаэкзамен биолог.docx
    ТипДокументы
    #786880
    страница6 из 9
    1   2   3   4   5   6   7   8   9

    Цитологические основы законов Менделя базируются на:

    1) парности хромосом (парности генов, обусловливающих возможность развития какого-либо признака)

    2) особенностях мейоза (процессах, происходящих в мейозе, которые обеспечивают независимое расхождение хромосом с находящимися на них генами к разным полюсам клетки, а затем и в разные гаметы)

    3) особенностях процесса оплодотворения (случайного комбинирования хромосом, несущих по одному из каждой аллельной пары)

    65)Аллельные гены.. Определение. Формы: взаимодействия,множественный аллелизм,его примеры.

    Аллельные гены - гены, определяющие альтернативное развитие одного и того же признака и расположенные в идентичных участках гомологичных хромосом. Итак, гетерозиготные особи имеют в каждой клетке два гена - А и а, отвечающих за развитие одного и того же признака. Такие парные гены называют аллельными генами или аллелями. Любой диплоидный организм, будь то растение, животное или человек, содержит в каждой клетке два аллеля любого гена. Исключение составляют половые клетки - гаметы. В результате мейоза в каждой гамете остается один комплект гомологичных хромосом, поэтому любая гамета имеет лишь по одному аллельному гену. Аллели одного гена располагаются в одном и том же месте гомологичных хромосом. Схематически гетерозиготная особь обозначается так: А/а. Гомозиготные особи при подобном обозначении выглядят так: А/А или а/а, но их можно записать и как АА и аа.
    Взаимодействие между аллельными генами осуществляется в виде трех форм: полное доминирование, неполное доминирование и независимое проявление (кодоминирование).

    Полное доминирование – когда один доминантный аллель полностью подавляет проявление рецессивного аллеля, например, желтая окраска горошин доминирует над зеленой.

    Неполное доминирование наблюдается в том случае, когда один ген из пары аллелей не обеспечивает образование в достаточном для нормального проявления признака его белкового продукта. При этой форме взаимодействия генов все гетерозиготы и гомозиготы значительно отличаются по фенотипу друг от друга. Примером расщепления при неполном доминировании может служить наследование окраски цветков Ночной красавицы.

    При скрещивании растений с красными цветками (АА) и растений с белыми (аа) гибриды F1 имеют розовые цветки (Аа). Таким образом, имеет место неполное доминирование; в F2 наблюдается расщепление 1 : 2 : 1 как по фенотипу, так и по генотипу.

    Кроме полного и неполного доминирования известны случаи отсутствия доминантно-рецессивных отношений или кодоминирования. При кодоминировании у гетерозиготных организмов каждый из аллельных генов вызывает формирование в фенотипе контролируемого им признака.

    Примером этой формы взаимодействия аллелей служит наследование групп крови человека по системе АВ0, детерминируемых геном I. Существует три аллеля этого гена Io, Ia, Ib, определяющие антигены групп крови. Наследование групп крови иллюстрирует также явление множественного аллелизма: в генофондах популяций человека ген I существует в виде трех разных аллелей, которые комбинируются у отдельных индивидуумов только попарно. До этого примера мы говорили о генах, существующих только в двух разных аллельных формах. Однако многие гены состоят из сотен пар нуклеотидов, так что мутации могут проходить во многих участках гена и порождать множество различных его аллельных форм. Так как в каждой из гомологичной хромосом имеется по одному аллельному гену, то, разумеется, диплоидный организм имеет не более двух из серии аллелей генофонда популяции.

    66)Множественные аллели и полигенное наследование на примере человека. Взаимодействие неаллельных генов: комплементарность.

    Неаллельные гены — это гены, расположенные в различных участках хромосом и кодирующие неодинаковые белки. Неаллельные гены также могут взаимодействовать между собой.

    При этом либо один ген обусловливает развитие нескольких признаков, либо, наоборот, один признак проявляется под действием совокупности нескольких генов. Выделяют три формы и взаимодействия неаллельных генов:

    комплемментарность;

    эпистаз;

    полимерия.
    Комплементарное (дополнительное) действие генов — это вид взаимодействия неаллельных генов, доминантные аллели которых при совместном сочетании в генотипе обусловливают новое фенотипическое проявление признаков. При этом расщепление гибридов F2 по фенотипу может происходить в соотношениях 9:6:1, 9:3:4, 9:7, иногда 9:3:3:1. Примером комплементарности является наследование формы плода тыквы. Наличие в генотипе доминантных генов А или В обусловливает сферическую форму плодов, а рецессивных — удлинённую. При наличии в генотипе одновременно доминантных генов А и В форма плода будет дисковидной. При скрещивании чистых линий с сортами, имеющими сферическую форму плодов, в первом гибридном поколении F1 все плоды будут иметь дисковидную форму, а в поколении F2 произойдёт расщепление по фенотипу: из каждых 16 растений 9 будут иметь дисковидные плоды, 6 — сферические и 1 — удлинённые.
    Эпистаз — взаимодействие неаллельных генов, при котором один из них подавляется другим. Подавляющий ген называется эпистатичным, подавляемый — гипостатичным. Если эпистатичный ген не имеет собственного фенотипического проявления, то он называется ингибитором и обозначается буквой I. Эпистатическое взаимодействие неаллельных генов может быть доминантным и рецессивным. При доминантном эпистазе проявление гипостатичного гена (В, b) подавляется доминантным эпистатичным геном (I > В, b). Расщепление по фенотипу при доминантном эпистазе может происходить в соотношении 12:3:1, 13:3, 7:6:3. Рецессивный эпистаз — это подавление рецессивным аллелем эпистатичного гена аллелей гипостатичного гена (i > В, b). Расщепление по фенотипу может идти в соотношении 9:3:4, 9:7, 13:3.
    Полимерия — взаимодействие неаллельных множественных генов, однозначно влияющих на развитие одного и того же признака; степень проявления признака зависит от количества генов. Полимерные гены обозначаются одинаковыми буквами, а аллели одного локуса имеют одинаковый нижний индекс.
    Полимерное взаимодействие неаллельных генов может быть кумулятивным и некумулятивным. При кумулятивной (накопительной) полимерии степень проявления признака зависит от суммирующего действия генов. Чем больше доминантных аллелей генов, тем сильнее выражен тот или иной признак. Расщепление F2 но фенотипу происходит в соотношении 1:4:6:4:1.
    При некумулятивной полимерии признак проявляется при наличии хотя бы одного из доминантных аллелей полимерных генов. Количество доминантных аллелей не влияет на степень выраженности признака. Расщепление по фенотипу происходит в соотношении 15:1.

    Пример: цвет кожи у людей, который зависит от четырёх генов.
    67)Эпистаз

    Эпистаз - взаимодействие генов, при котором активность одного гена находится под влиянием вариаций других генов.

    Ген, подавляющий фенотипические проявления другого, называется эпистатичным; ген, чья активность изменена или подавлена, называется гипостатичным.

    Примеры эпистатического влияния тесно связанных генов на приспособленность можно обнаружить в супергенах и главном комплексе гистосовместимости. Эффект может проявляться как напрямую на уровне генов, при этом продукт эпистатичного гена предотвращает транскрипцию гипостатичного, так и на уровне фенотипов.

    68)Полимерия

    Полимерия — явление, когда различные неаллельные гены могут оказывать однозначное действие на один и тот же признак, усиливая его проявление.

    Наследование признаков при полимерном взаимодействии генов. В том случае, когда сложный признак определяется несколькими парами генов в генотипе и их взаимодействие сводится к накоплению эффекта действия определенных аллелей этих генов, в потомстве гетерозигот наблюдается разная степень выраженности признака, зависящая от суммарной дозы соответствующих аллелей. Например, степень пигментации кожи у человека, определяемая четырьмя парами генов, колеблется от максимально выраженной у гомозигот по доминантным аллелям во всех четырех парах (Р1Р1Р2Р2Р3Р3Р4Р4) до минимальной у гомозигот по рецессивным аллелям (р1р1р2р2р3р3р4р4) (см. рис. 3.80). При браке двух мулатов, гетерозиготных по всем четырем парам, которые образуют по 24 = 16 типов гамет, получается потомство, 1/256 которого имеет максимальную пигментацию кожи, 1/256 — минимальную, а остальные характеризуются промежуточными показателями экспрессивности этого признака. В разобранном примере доминантные аллели полигенов определяют синтез пигмента, а рецессивные — практически не обеспечивают этого признака. В клетках кожи организмов, гомозиготных по рецессивным аллелям всех генов, содержится минимальное количество гранул пигмента.

    В некоторых случаях доминантные и рецессивные аллели полигенов могут обеспечивать развитие разных вариантов признаков. Например, у растения пастушьей сумки два гена одинаково влияют на определение формы стручочка. Их доминантные аллели образуют одну, а рецессивные — другую форму стручочков. При скрещивании двух дигетерозигот по этим генам (рис. 6.16) в потомстве наблюдается расщепление 15:1, где 15/16 потомков имеют от 1 до 4 доминантных аллелей, а 1/16, не имеет доминантных аллелей в генотипе.

    Если гены располагаются, каждый в своем отдельном локусе, но их взаимодействие проявляется в одном и том же направлении – это полигены. Один ген проявляет признак незначительно. Полигены дополняют друг друга и оказывают мощное действие – возникает полигенная система – т.е. система является результатом действия одинаково направленных генов. Гены подвергаются значительному влиянию главных генов, которых более 50. полигенных систем известно множество.

    При сахарном диабете наблюдается умственная отсталость.

    Рост, уровень интеллекта - определяются полигенными системами

    69)Хромосомный механизм наследования пола. Цитогенетические методы определения пола. Наследование, сцепленное с полом.


    Хромосомная теория наследственности — теория, согласно которой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности, то есть преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом. Хромосомная теория наследственности возникла в начале 20 в. на основе клеточной теории и использовалась для изучения наследственных свойств организмов гибридологического анализа.

    Основоположник хромосомной теории Томас Гент Морган, американский генетик, Нобелевский лауреат. Морган и его ученики установили, что:
    – каждый ген имеет в хромосоме определенный локус (место);

    – гены в хромосоме расположены в определенной последовательности;

    – наиболее близко расположенные гены одной хромосомы сцеплены, поэтому наследуются преимущественно вместе;

    – группы генов, расположенных в одной хромосоме, образуют группы сцепления;

    – число групп сцепления равно гаплоидному набору хромосом у гомогаметных особей и n+1 у гетерогаметных особей;

    – между гомологичными хромосомами может происходить обмен участками (кроссинговер); в результате кроссинговера возникают гаметы, хромосомы которых содержат новые комбинации генов;

    – частота (в %) кроссинговера между неаллельными генами пропорциональна расстоянию между ними;

    – набор хромосом в клетках данного типа (кариотип) является характерной особенностью вида;

    – частота кроссинговера между гомологичными хромосомами зависит от расстояния между генами, локализованными в одной хромосоме. Чем это расстояние больше, тем выше частота кроссинговера. За единицу расстояния между генами принимается 1 морганида (1 % кроссинговера) или процент появления кроссоверных особей. При значении этой величины в 10 морганид можно утверждать, что частота перекреста хромосом в точках расположения данных генов равна 10 % и что в 10 % потомства будут выявлены новые генетические комбинации.
    Для выяснения характера расположения генов в хромосомах и определения частоты кроссинговера между ними строятся генетические карты. Карта отражает порядок расположения генов в хромосоме и расстояние между генами одной хромосомы. Эти выводы Моргана и его сотрудников получили название хромосомной теории наследственности. Важнейшими следствиями этой теории являются современные представления о гене, как о функциональной единице наследственности, его делимости и способности к взаимодействию с другими генами.
    Формированию хромосомной теории способствовали данные, полученные при изучении генетики пола, когда были установлены различия в наборе хромосом у организмов различных полов.

    Генетика пола.

    Пол - совокупность признаков, по которым производится специфическое разделение особей или клеток, основанное на морфологических и физиологических особенностях, позволяющее осуществлять в процессе полового размножения комбинирование в потомках наследственных задатков родителей.

    Морфологические и физиологические признаки, по которым производится специфическое разделение особей, называется половым.

    Признаки, связанные с формированием и функционированием половых клеток, называется первичными половыми признаками. Это гонады (яичники или семенники), их выводные протоки, добавочные железы полового аппарата, копулятивные органы. Все другие признаки, по которым один пол отличается от другого, получили название вторичных половых признаков. К ним относят: характер волосяного покрова, наличие и развитие молочных желез, строение скелета, тип развития подкожной жировой клетчатки, строение трубчатых костей и др.

    Наследование, сцепленное с полом наследование какого-либо гена, находящегося в половых хромосомах. Наследование признаков, проявляющихся только у особей одного пола, но не определяемых генами, находящимися в половых хромосомах, называется наследованием, ограниченным полом.
    Наследованием, сцепленным с X-хромосомой, называют наследование генов в случае, когда мужской пол гетерогаметен и характеризуется наличием Y-хромосомы (XY), а особи женского пола гомогаметны и имеют две X-хромосомы (XX). Таким типом наследования обладают все млекопитающие (в том числе человек), большинство насекомых и пресмыкающихся.
    Наследованием, сцепленным с Z-хромосомой, называют наследование генов в случае, когда женский пол гетерогаметен и характеризуется наличием Z-хромосомы (ZW), а особи мужского пола гомогаметны и имеют две Z-хромосомы (ZZ). Таким типом наследования обладают все представители класса птиц.
    Если аллель сцепленного с полом гена, находящегося в X-хромосоме или Z-хромосоме, является рецессивным, то признак, определяемый этим геном, проявляется у всех особей гетерогаметного пола, которые получили этот аллель вместе с половой хромосомой, и у гомозиготных по этому аллелю особей гомогаметного пола. Это объясняется тем, что вторая половая хромосома (Y или W) у гетерогаметного пола не несет аллелей большинства или всех генов, находящихся в парной хромосоме.
    Таким признаком гораздо чаще будут обладать особи гетерогаметного пола. Поэтому заболеваниями, которые вызываются рецессивными аллелями сцепленных с полом генов, гораздо чаще болеют мужчины, а женщины часто являются носителями таких аллелей

    70) Онтогенетическая изменчивость

    Онтогенетическаяизменчивость– закономерное изменение генотипа и фенотипа в ходе онтогенеза.

    Изменение фенотипа организма человека в процессе роста, появление вторичных половых признаков – это примеры онтогенетической изменчивости.

    Закономерное изменение генотипа в ходе онтогенеза обнаружено недавно. Правда, известно таких примеров немного. Так, белки иммуноглобулины у мышей состоят из двух фракций: V (вариабельная) и С (константная). У эмбрионов мышей кодирующие их гены расположены на довольно большом расстоянии друг от друга:

    Онтогенетическая изменчивость — изменчивость, происходящая в процессе жизни организма и представляющая собой различие между молодым и взрослым организмами на разных этапах развития (напр., молодые растения часто имеют более простое строение листовой пластинки, которая в процессе роста растения усложняется).

    Она является разновидностью фенотипической изменчивости, которая связана с определенной схемой развития организма в процессе онтогенеза, при этом генотип не претерпевает изменений, а фенотип меняется в соответствии с каждым этапом развития, благодаря морфогенезу и дифференцировке клеток. Морфогенез — это возникновение новых структур на каждом этапе развития, определяемое генетическим аппаратом клеток, может осуществляться благодаря контактным и дистантным межклеточным взаимодействиям, которые контролируют этот процесс. В случае нарушений морфогенеза возникают тератомы (уродства), в том числе и новообразования. Поскольку эти механизмы связаны с «включением» и «выключением» генов, изменчивость этого рода называется — «парагеномная», «эпигенетическая», «эпигенотипическая» или «эпигеномная».

    71)Генные мутации, молекулярные механизмы, определяющие частоту мутаций в природе.

    ГЕННЫЕ МУТАЦИИ связаны с изменением состава или последовательности нуклеотидов ДНК в пределах гена. Генные мутации наиболее важны среди всех категорий мутаций.

    Синтез белка основан на соответствии расположения нуклеотидов в гене и порядком аминокислот в молекуле белка. Возникновение генных мутаций (изменение состава и последовательности нуклеотидов) изменяет состав соответствующих белков-ферментов и в итоге к фенотипическим изменениям. Мутации могут затрагивать все особенности морфологии, физиологии и биохимии организмов. Многие наследственные болезни человека также обусловлены мутациями генов.

    Мутации в естественных условиях случаются редко - одна мутация определенного гена на 1000-100000 клеток. Но мутационный процесс идет постоянно, идет постоянное накопление мутаций в генотипах. А если учесть, что число генов в организме велико, то можно сказать, что в генотипах всех живых организмов имеется значительное число генных мутаций.
    По своим последствиям генные мутации делятся на две группы: мутации без сдвига рамки считывания и мутации со сдвигом рамки считывания.

     Мутации без сдвига рамки считывания происходят в результате замены нуклеотидных пар, при этом общая длина ДНК не изменяется. В результате возможна замена аминокислот, однако из-за вырожденности генетического кода возможно и сохранение структуры белка.
    1   2   3   4   5   6   7   8   9


    написать администратору сайта