Главная страница
Навигация по странице:

  • СпецифическаяДНК: Самая примечательная особенность митохондрий - это наличие у них своей собственной ДНК: митохондриальной ДНК

  • Световые реакции.

  • Реакции фиксации углерода (темновые реакции).

  • Размножение в органическом мире

  • экзамен биолог. 1 Качественные особенности живой материи


    Скачать 238.25 Kb.
    Название1 Качественные особенности живой материи
    Дата14.11.2022
    Размер238.25 Kb.
    Формат файлаdocx
    Имя файлаэкзамен биолог.docx
    ТипДокументы
    #786880
    страница3 из 9
    1   2   3   4   5   6   7   8   9


    Митохондрия состоит из наружной мембраны, которая является ее оболочкой и внутренней мембраны, места энергетических преобразований. Внутренняя мембрана образует многочисленные складки, способствующие интенсивной деятельности по преобразованию энергии.

    Митохондрия - это единственный источник энергии клеток. Расположенные в цитоплазме каждой клетки, митохондрии сравнимы с «батарейками», которые производят, хранят и распределяют необходимую для клетки энергию.

    Митохондрии подвижны и перемещаются в цитоплазме в зависимости от потребностей клетки. Благодаря наличию собственной ДНК они размножаются и самоуничтожаются независимо от деления клетки.

    Клетки не могут функционировать без митохондрий, без них жизнь не возможна.

    СпецифическаяДНК:
    Самая примечательная особенность митохондрий - это наличие у них своей собственной ДНК: митохондриальной ДНК. Независимо от ядерной ДНК, каждая митохондрия имеет свой собственный генетический аппарат.

    Митохондрия: энергетическая станция клетки

    Процесс преобразования клеточной энергии
    Митохондрии используют 80% кислорода, который мы вдыхаем, чтобы преобразовывать потенциальную энергию в энергию, используемую клеткой. В процессе окисления освобождается большое количество энергии, которая сохраняется митохондриями в виде молекул АТФ.

    В день преобразовывается 40 кг. АТФ.
    Энергия в клетке может принимать различные формы. Принцип действия клеточного механизма – преобразование потенциальной энергии в энергию, которую может напрямую использовать клетка.
    Потенциальные виды энергии попадают в клетку через питание в виде углеводов, жиров и белков
    Клеточная энергия состоит из молекулы называемой АТФ: Аденозинтрифосфат. Она синтезируется в результате преобразования углеводов, жиров и белков внутри митохондрии.
    За день в организме взрослого человека синтезируется и распадается эквивалент 40 кг АТФ.

    32)Хлоропласты как органеллы трансформации световой энергии в в энергию химических связей

    Процесс фотосинтеза осуществляется в хлоропластах в два этапа. В гранах (тилакоидах) протекают реакции, вызываемые светом.- световые, а в строме - реакции, не связанные со светом,- темновые, или реакции фиксации углерода.

    Световые реакции.
    1. Свет, попадая на молекулы хлорофилла, которые находятся в мембранах тилакоидов гран, приводит их в возбужденное состояние. В результате этого электроны е сходят со своих орбит и переносятся с помощью переносчиков за пределы мембраны тилакоида, где и накапливаются, создавая отрицательно заряженное электрическое поле.
    2. Место вышедших электронов в молекулах хлорофилла занимают электроны воды е, так как вода под действием света подвергается фоторазложению (фотолизу):

    Гидроксилы ОН

    , став радикалами ОН, объединяются: 4ОН--> 2H20+O2, образуя воду и свободный кислород, который выделяется в атмосферу.
    3. Протоны водорода H+ не проникают через мембрану тилакоида и накапливаются внутри, образуя положительно заряженное электрическое поле, что приводит к увеличению разности потенциалов по обе стороны мембраны.
    4. При достижении критической разности потенциалов протоны Н"^ устремляются по протонному каналу в ферменте АТФ-синтетаза, встроенному в мембрану тилакоида, наружу. На выходе из протонного канала создается высокий уровень энергии, которая идет на синтез АТФ (АДФ+Ф АТФ). Образовавшиеся молекулы АТФ переходят в строму, где участвуют в реакциях фиксации углерода.
    5. Протоны Н"^, вышедшие на поверхность мембраны тилакоида, соединяются с электронами в, образуя атомарный водород Н, который идет на восстановление переносчика НАДФ+, 2e+H+ + HAДФ+ ---> HAДФ•H (переносчик с присоединенным водородом)

    Таким образом, активированный световой энергией электрон хлорофилла используется для присоединения водорода к переносчику. HAДФ•H переходит в строму хлоропласта, где участвует в реакциях фиксации углерода.

    Реакции фиксации углерода (темновые реакции).
    Осуществляются в строме хлоропласта, куда поступают АТФ, НАДФ-Н от тилакоидов гран и СОз из воздуха. Кроме того, там постоянно находятся пятиуглеродные соединения - пентозы C5, которые образуются в цикле Кальвина (цикле фиксации СO2). Этот цикл можно проследить на углероде как главном элементе углеводов.

    1. К пентозе С5 присоединяется СO2. в результате чего появляется нестойкое шестиуглеродное соединение С6, которое расщепляется на две трехуглеродные группы 2Сз - триозы.
    2. Каждая из триоз 2Сз принимает по одной фосфатной группе от 2 АТФ, что обогащает молекулы энергией.
    3. Каждая из триоз 2Сз присоединяет по одному атому водорода от 2 НАДФ-Н.
    4. После чего одни триозы объединяются, образуя углеводы (2Сз --> С6 --> С6Н120б) (глюкоза)

    5. Другие триозы объединяются, образуя пентозы 5Сз --> 3С5, и вновь включаются в цикл фиксации СО2. Суммарная реакция фотосинтеза:

    Хемосинтез.
    Некоторые бактерии, лишенные хлорофилла, тоже способны к синтезу органических соединений, при этом они используют энергию химических реакций неорганических веществ. Преобразование энергии химических реакций в химическую энергию синтезируемых органических соединений называется хемосинтезом.

    33)Амитоз

    Амитоз — прямое (простое) деление интерфазного ядра путем перетяжки. Происходит вне митотического цикла, т. е. не сопровождается сложной перестройкой всей клетки; спирализации   хромосом также не происходит. Понятно, что при этом не обеспечивается равномерное распределение генетического материала между до­черними ядрами. Амитоз может сопровождаться делением клет­ки, а может ограничиваться лишь делением ядра без разделения цитоплазмы, что приводит к образованию дву- и многоядерных клеток. Клетка, претерпевшая амитоз, в дальнейшем неспособна вступить в нормальный митотический цикл. По сравнению с мито­зом амитоз встречается довольно редко. В норме он наблюдается в высокоспециализированных тканях, в клетках, которым уже не предстоит делиться: в эпителии и печени позвоночных, в зароды­шевых оболочках млекопитающих, в клетках эндосперма семени растений. Амитоз наблюдается также при необходимости быстро­го восстановления тканей (после операций и травм). Амитозом также часто делятся клетки злокачественных опухолей.

    34)Биологический смысл мейоза

    биологический смысл мейоза заключается в сохранении постоянства хромосомного набора для данного вида. Кроме того, при мейозе, в отличие от митоза, происходит частичная перекомбинация наследственной информации, возникают новые сочетания генов. Это повышает выживаемость вида в процессе эволюции. Мейоз включает два деления клетки, которые также состоят из профазы, метафазы, анафазы и телофазы. Перед началом мейоза, как и при митозе, ДНК клетки удваивается. Каждая хромосома теперь состоит из двух дочерних хроматид. В профазе мейоза (как и при митозе) хромосомы становятся видимыми, центриоли расходятся к полюсам, образуется веретено деления.

    35)Размножение-основное свойство живого. Бесполое размножение, его формы, биологическое значение

    Размножение в органическом мире. Способность к размножению является одним из важнейших признаков жизни. Эта способность проявляется уже на молекулярном уровне жизни. Вирусы, проникая в клетки других организмов, воспроизводят свою ДНК или РНК и таким образом размножаются. Размножение – это воспроизведение генетически сходных особей данного вида, обеспечивающее непрерывность и преемственность жизни.

    Различают следующие формы размножения:
    Бесполое размножение. Эта форма размножения характерна как для одноклеточных, так и для многоклеточных организмов. Однако наиболее распространено бесполое размножение в царствах Бактерии, Растения и Грибы. В царстве среди животных этим способом размножаются в основном простейшие и кишечнополостные. В бесполой форме размножение осуществляется родительской особью самостоятельно, без обмена наследственной информацией с другими особями. Дочерний организм образуется путем отделения от родительской особи одной или нескольких соматических (телесных) клеток и дальнейшего их размножения посредством митоза. Потомство наследует признаки родителя, являясь в генетическом отношении его точной копией.
    Существует несколько способов бесполого размножения:
    – Простое деление материнской клетки на две или несколько клеток. Особенно распространено бесполое размножение у бактерий и сине-зеленых водорослей. Единственная клетка этих безъядерных организмов разделяется пополам или сразу на несколько частей. Каждая часть является целостным функциональным организмом.

    Простым делением размножаются амебы, инфузории, эвглены и другие простейшие. Разделение происходит посредством митоза, поэтому дочерние организмы получают от родительских тот же набор хромосом.
    – Вегетативное размножение частями тела характерно для многоклеточных организмов – растений, губок, кишечнополостных, некоторых червей. Растения вегетативно могут размножаться черенками, отводками, корневыми отпрысками и другими частями организма. Этот вид бесполого размножения широко распространен у растений.
    – Почкование – Этот тип размножения используют как одноклеточные, так и некоторые многоклеточные организмы: дрожжи (низшие грибы), инфузории, коралловые полипы.

    Почкование у пресноводных гидр происходит следующим образом. Сначала на стенке гидры образуется вырост, который постепенно удлиняется. На его конце появляются щупальца и ротовое отверстие. Из почки вырастает маленькая гидра, которая отделяется и становится самостоятельным организмом. У других существ почки могут оставаться на теле родителя.
    – Митотическое спорообразование. Родоначальницей нового организма может стать специализированная клетка родительского существа — спора. Такой способ размножения характерен для растений и грибов. Размножаются спорами многоклеточные водоросли, мхи, папоротники, хвощи и плауны.
    Бесполое размножение обычно обеспечивает увеличение численности генетически однородного потомства, поэтому его часто применяют селекционеры растений для сохранения полезных свойств сорта.
    36)Половое размножение, его способы и биологическое значение.

    Половое размножениевоспроизведение   себе   подобных, происходящее, как правило, с участием двух особей в результате слияния  гамет, т. е. копуляции яйцеклетки и сперматозоида. Яйцеклетки образуются у особей женского пола (материнский ор­ганизм), сперматозоиды — у особей мужского пола (отцовский ор­ганизм). Половое размножение свойственно как растительным, так и животным организмам. У растений яйцеклетки образуются в специальных органах — архегониях, сперматозоиды — в антеридиях.  У  животных яйцеклетки формируются в яичниках, сперматозоиды — в семенниках. Разница заключается в том, что у животных образованию половых клеток (гамет) предшествует мейоз, а у растений мейоз происходит перед образованием спор, из которых развиваются заростки. На них формируются архегонии с яйцеклетками и антеридии со сперматозоидами. Таким образом, у любых организмов — растений или животных — гаметы обязательно гаплоидные, а зигота диплоидная, из нее формирует­ся диплоидный зародыш, половина хромосом которого от мате­ринского организма, а половина от отцовского.
    Объединение генетической информации может происходить при конъюгации (временном соединении особей для обмена информацией, как это происходит у инфузорий) и копуляции (слиянии особей для оплодотворения) у одноклеточных животных, а также при оплодотворении у представителей разных царств. Особым случаем полового размножения является партеногенез у некоторых животных (тли, трутни пчел). В этом случае новый организм развивается из неоплодотворенного яйца, но до этого всегда происходит образование гамет.

    Половое размножение у покрытосеменных растений происходит путем двойного оплодотворения. Дело в том, что в пыльнике цветка образуются гаплоидные пыльцевые зерна. Ядра этих зерен делятся на два – генеративное и вегетативное. Попав на рыльце пестика, пыльцевое зерно прорастает, образуя пыльцевую трубку. Генеративное ядро делится еще раз, образуя два спермия. Один из них, проникая в завязь, оплодотворяет яйцеклетку, а другой сливается с двумя полярными ядрами двух центральных клеток зародыша, образуя триплоидный эндосперм.
    Все вышеперечисленное справедливо только для эукариот. У прокариот тоже есть половое размножение, но происходит оно по-другому.

    Таким образом, при половом размножении происходит смешивание геномов двух разных особей одного вида. Потомство несет новые генетические комбинации, что отличает их от родителей и друг от друга. Различные комбинации генов, проявляющиеся в потомстве в виде новых, интересующих человека признаках, отбираются селекционерами для выведения новых пород животных или сортов растений. В некоторых случаях применяют искусственное оплодотворение. Это делается и для того, чтобы получить потомство с заданными свойствами, и для того, чтобы преодолеть бездетность некоторых женщин.

    37)Гаметогенез: формирвание женских гамет, его особенности

    Гаметогенез – это последовательный процесс, который обеспечивает размножение, рост и созревание половых клеток в мужском организме (сперматогенез) и женском (овогенез). 

    Гаметогенез протекает в половых железах - сперматогенез в семенниках у мужчин, а овогенез в яичниках у женщин. В результате гаметогенеза в организме женщины образуются женские половые клетки - яйцеклетки, а у мужчин - мужские половые клетки сперматозоиды.
    Именно процесс гаметогенез (сперматогенез, овогенез) дает мужчине и женщине возможность воспроизведения потомства.
    Гаметогенез имеет несколько стадий. Сходство сперматогенеза и овогенеза как раз и заключается в том, что три стадии у них одинаковы.

    1. Стадия размножения. Первичные клетки на этой стадии называются сперматогониями и овогониями, из них в последующем образуются мужские и женские половые клетки. Половые клетки несколько раз делятся путем митоза, и количество их значительно возрастает. Сперматогонии размножаются у мужчины в течение всего репродуктивного периода, а размножение овогоний происходит в эмбриональном периоде и наиболее интенсивно происходит во 2 - 5 месяц внутриутробного развития.

    2. Стадия роста. В этот период клетки значительно увеличиваются в размерах. Сперматогонии и овогонии превращаются в сперматоциты и овоциты I порядка. Овоциты I порядка достигают больших размеров, поскольку накапливают питательные вещества.

    3. Стадия созревания. На этой стадии происходят два следующих друг за другом деления - мейоз I и мейоз II. После первого деления образуются сперматоциты и овоциты II порядка, а после второго деления - сперматиды и зрелые яйцеклетки с тремя полярными тельцами, которые в процессе размножения не участвуют и погибают. При созревании один сперматоцит I порядка дает четыре сперматиды, а один овоцит I порядка образует одну яйцеклетку и три полярных тельца.

    Эти особенности сперматогенеза и овогенеза имеют биологический смысл, который связан с разным назначением мужских и женских гамет. Неравномерное деление клеток при овогенезе (меньше) обеспечивает формирование крупной яйцеклетки, в ней накапливается большее количество питательных веществ, так как из оплодотворенного яйца будет развиваться новый организм.

    При сравнительной характеристике овогенеза и сперматогенеза можно заметить, что сперматозоидов образуется значительно больше, и это также имеет биологический смысл.
    Яйцеклетку достигает только один сперматозоид, проникает в нее и доставляет свой набор хромосом. Остальные же в процессе поиска яйцеклетки массово погибают.

    При сравнении овогенеза и сперматогенеза становится понятным, почему сперматозоидам нет необходимости в запасании питательных веществ - их существование кратковременно, а подвижность должна быть высокой.

    4. Стадия формирования. Она характерна только для сперматогенеза. Незрелая сперматида превращается в сперматозоид, приобретая свойственный ему вид. Образование сперматозоидов у мужчин начинается только в период полового созревания и происходит в течение всего года. Период развития сперматогоний в зрелые сперматозоиды составляет 74 дня.


    признаки

    сперматогенез

    овогенез

    Половые железы, половые клетки

    Яички, сперматозоиды

    Яичники,

    яйцеклетки

    Характерные особенности половых клеток:

    - относительные размеры

    - подвижность

    - форма

    - наличие питательных веществ

     

     

    55 мк

    подвижные

    округлые со жгутиком

    отсутствует

     

     

    130-169 мк

    неподвижные

    округлые

    имеется

    Особенности развития половых клеток на разных стадиях:

    - стадия размножения

     

     

    - стадия роста

     

    - стадия созревания

     

     

     

    путем митоза образуются сперматоциты;

    увеличиваются в размерах;

    путем мейоза образуются гаплоидные сперматиды, из которых формируются сперматозоиды

     

     

     

    путем митоза образуются овоциты;

    увеличиваются в размерах;

    путем мейоза образуются гаплоидные овоциты, из которых формируется яйцеклетка



    Особеннсоти:

    1. Мы выяснили, что гаметогенез включает стадии размножения, роста и созревания клеток. Сперматогенез включает также стадию формирования (ее нет при овогенезе), в этом заключаются отличия сперматогенеза от овогенеза. Сперматозоиды проходят дополнительную четвертую стадию для того, чтобы приобрести своеобразную форму и сформировать аппарат движения.

    2. Второе отличие сперматогенеза от овогенеза: из сперматоцита I порядка получается четыре половых клетки, а из ооцита I порядка получается одна полноценная половая клетка.

    3. Яйцеклетки образуются циклически, процесс повторяется через 21-35 дней (менструальный цикл). После гибели яйцеклетки, что сопровождается кровотечением, изменившийся гормональный фон дает толчок к созреванию другой яйцеклетки.
    Сравнительная характеристика овогенеза и сперматогенеза показывает, что у женщин мейоз начинается в период внутриутробного развития.
    Ооциты I порядка у новорожденной девочки останавливаются в фазе мейоз I, и завершается созревание ооцита к моменту полового созревания. У мальчиков процесс образования сперматозоидов идет непрерывно и сохраняется в течение всей половой зрелости мужчины.

    4. Из характеристики овогенеза и сперматогенеза следует, что существуют значительные различия в количестве образованных половых клеток в женском и мужском организме. Взрослый мужчина производит 30 миллионов спермиев в день, а женщина - порядка 500 зрелых яйцеклеток за всю свою жизнь.

    5. Различия сперматогенеза и овогенеза заключаются также в том, что стадия размножения при сперматогенезе идет постоянно, а при овогенезе заканчивается после рождения.

    6. Стадия роста при сперматогенезе короче, чем при овогенезе.

    7. Стадия созревания при овогенезе имеет особенности, которые заключаются в неравномерности делений при созревании, что приводит к выделению полярных телец, что отсутствует при сперматогенезе.

    8. Различия сперматогенеза и овогенеза заключаются в том, что сперматогенез более подвержен влиянию внешней среды, нежели овогенез, что связано с различием в расположении половых органов - семенники находятся вне брюшной полости.

    9. Из сравнительной характеристики овогенеза и сперматогенеза можно увидеть, что, поскольку образование яйцеклеток начинается еще до рождения девочки, а завершается для яйцеклетки только после ее оплодотворения, то неблагоприятные факторы внешней среды могут повлечь генетические аномалии у потомства.
    38)Гаметогенез: образование мужских гамет . Оплодотворение. Половой диморфизм и биологическое значение разнополости.

    Оплодотворение – это процесс слияния половых клеток. Процесс оплодотворения складывается из трех последовательных фаз: сближения гамет, активации яйцеклетки, слияния гамет или сингамии. Случайная встреча разных гамет при оплодотворении приводит к тому, что среди особей вида практически невозможно появление двух генотипически одинаковых организмов. Достигаемое с помощью описанных процессов генотипическое разнообразие особей предполагает наследственные различия между ними на базе общего видового генома.
    1   2   3   4   5   6   7   8   9


    написать администратору сайта