Главная страница

гвв. 1 Классификация и физический механизм работы вч и свч генераторов


Скачать 5.65 Mb.
Название1 Классификация и физический механизм работы вч и свч генераторов
Дата18.04.2023
Размер5.65 Mb.
Формат файлаdocx
Имя файлагвв.docx
ТипДокументы
#1070900
страница40 из 40
1   ...   32   33   34   35   36   37   38   39   40
+ умножители частоты). При работе РРЛ в сантиметровом диапазоне волн, кратность умножения может составить десятки или даже сотни раз. Как правило, в схемах гетеродинов используются транзисторные умножители с кратностью 2 ÷ 3 на одну ступень. Поскольку в режиме умножения частоты ГВВ требует значительной мощности возбуждения, умножительные ступени чередуются с усилительными каскадами, а в выходных ступенях приходится использовать варакторные умножители (см. рисунок 12.3).



Рисунок 12.3 – Структурная схема гетеродина

Кратности умножения в одной ступени более 3 обычноне используются, из-за появления паразитной амплитудной модуляции. Эту особенность поясняет рисунок 12.4.Амплитудная модуляция (АМ) возникает вследствие того, что за период возбуждения транзисторного умножителя амплитуда коллекторного напряжения успевает затухать, и такое затухание тем значительнее, чем выше кратность умножения.



Рисунок 12.4 – Диаграммы тока и напряжения в коллекторной цепи

умножителя при высокой кратности умножения

 

При малой кратности умножения в одной ступени, глубина паразитной АМ невелика, а спектральные составляющие, ею вызванные, расположены достаточно далеко от основного колебания, и могут быть существенно ослаблены с помощью полосового фильтра.

В тракте гетеродина может включаться фазовый модулятор (ФМ), с помощью которого, при малом индексе модуляции, между станциями РРЛ обеспечивается служебная связь (uc).

В выходных ступенях гетеродина и передатчика, когда длина соединительных проводников становится сравнимой с длиной волны, для защиты активных элементов умножителей и усилителей от перегрузки, приходится включать ферритовые вентили для поглощения отраженных волн, или циркуляторы, которые направляют отраженные волны в балластную нагрузку.

Конструкция одного из вариантов ферритового циркулятора в полосковом исполнении представлена на риснке 12.5 [1]. Слева на этом же рисунке показана топология металлизации, которая наносится методом напыления на изолирующую подложку и ферритовый диск. Ферритовый диск помещается между постоянными магнитами, от расположения полюсов которых зависит направление передачи энергии (по часовой стрелке, или против).

Если в области вывода 3 на подложку напылить угольный резистор, циркулятор превращается в ферритовый вентиль.

 



Рисунок 12.5 - Ферритовый циркулятор

 

К частотным модуляторам передатчиков РРЛ и КС также предъявляются повышенные требования, что обусловлено необходимостью получения линейной модуляции промежуточной частоты (fПЧ) широкополосным групповым сигналом при очень большом значении девиации частоты (см. табл. 12.2). Решить такую задачу на промежуточной частоте методами, рассмотренными ранее (п.п. 9.3.1), практически невозможно, поэтому применяют более сложные схемы с использованием двух автогенераторов работающих на частотах в несколько раз выше промежуточной. Структурная схема такого модулятора представлена на рисунке 12.6.



Рисунок 12.6 – Частотный модулятор

 

Частоты f1, f2 выбираются следующим образом:

f1 >> fПЧ, f2 >> fПЧ, f2 - f1= fПЧ

Модуляция генераторов (ГПД) осуществляется групповым сигналом в противофазе, так, что при увеличении частоты одного генератора частота второго пропорционально уменьшается. В каждом генераторе отношение девиации частоты к несущей частоте (f2 или f1) сравнительно не велико, поэтому линейность модуляции обеспечивается достаточно просто. После смесителя и фильтра, выделяющего разностную частоту, на выходе частотного модулятора получается промежуточная частота с удвоенным значением девиации.

Смесители, используемые на частотах, отведенных для радиорелейной связи, обычно выполняются с использованием нелинейных ёмкостей, в качестве которых используются р-n переходы специальных диодов - варакторов. Требования к параметрам смесительных диодов полностью аналогичны требованиям, которые предъявляются к умножительным диодам (см. п.п. 3.15.2).

На практике в схеме на рисунке 12.1 могут быть использованы смесители двух основных типов: проходного и отражающего [7]. При этом под коэффициентом передачи смесителя по мощности понимается отношение выходной мощности к мощности гетеродина. Упрощенная структурная схема одного из вариантов проходного смесителя представлена на рисунке 12.7. Здесь же представлена конструкция смесительной камеры на варакторных диодах.



Рисунок 12.7 – Смеситель проходного типа

 

Сигнал от гетеродина поступает на вход циркулятора 1 и далее через подстраиваемую волноводную секцию W1 и циркулятор 2 в смесительную камеру, в которой размещаются два встречно включенных варактора. Сюда же через ФНЧ подаётся сигнал промежуточной частоты, промодулированный ГС. Коаксиальные резонаторы W2, W3 и объёмный резонатор W4 настраиваются так, что после смешения разностная частота подавляется, а суммарная (fГЕТ +fПЧ) через циркулятор и полосовой фильтр поступает на выход смесителя. Остатки подавляемой разностной частоты и другие побочные частоты отражаются от полосового фильтра и через циркулятор 2, секцию и циркулятор 1 поступают в балластную нагрузку RБ, где и поглощаются. Волноводная секция W1, настраиваемая с помощью подстроечных штифтов, обеспечивает согласование гетеродина со смесителем.

К достоинствам проходного смесителя следует отнести относительно высокий к.п.д. (энергия гетеродина не затрачивается на генерацию разностной частоты). Основной недостаток – сложность настройки колебательной системы, состоящей из резонаторов W2, W3, W4 и секции W1.

Схема смесителя отражающего типа представлена на рисунке 12.8. Здесь сигнал гетеродина через циркулятор 1 поступает в смесительную камеру, где смешивается с промежуточной частотой. Колебания суммарной и разностной частоты через циркуляторы 1 и 2 проходят к полосовому фильтру, настроенному на пропускание суммарной частоты. Все остальные частоты от полосового фильтра отражаются и через циркулятор 2 поступают в балластную нагрузку.



Рисунок 12.8 – Смеситель отражающего типа

 

Поскольку функция подавления частот, отличающихся от рабочей, возложена на полосовой фильтр, такой смеситель проще в настройке, обеспечивает равномерную амплитудно-частотную характеристику, но имеет относительнол низкий к.п.д (по сравнению с проходным смесителем).

 

 
1   ...   32   33   34   35   36   37   38   39   40


написать администратору сайта