Главная страница
Навигация по странице:

  • Радиопередатчики цифровой информаци

  • Амплитудная манипуляция

  • Частотная манипуляция

  • гвв. 1 Классификация и физический механизм работы вч и свч генераторов


    Скачать 5.65 Mb.
    Название1 Классификация и физический механизм работы вч и свч генераторов
    Дата18.04.2023
    Размер5.65 Mb.
    Формат файлаdocx
    Имя файлагвв.docx
    ТипДокументы
    #1070900
    страница37 из 40
    1   ...   32   33   34   35   36   37   38   39   40

    Косвенные методы частотной модуляции


    ⇐ Предыдущая41424344454647484950Следующая ⇒







    В отличие от прямых методов ЧМ, преобразование фазовой модуляции в частотную исключает воздействие УЭ на несущую (среднюю) частоту модулированных колебаний. Поэтому необходимая стабильность средней частоты при косвенных видах ЧМ обеспечивается достаточно просто.

    Для осуществления ЧМ косвенным методом необходим фазовый модулятор. Простейший способ получения фазовой модуляции с преобразованием в ЧМ представлен на рисунке 9.8а



    Рисунок 9.8 – Схема ЧМ с фазовым модулятором

    Здесь R,C – интегрирующая цепь; Ср – разделительная ёмкость. Конденсатор С выполняет также функции блокировочной ёмкости в контуре Lк, СВ. Фазовая характеристика параллельного контура имеет вид φz(ω) = arctg[2(ω-ω0)Q/ω0]= arctg(2ΔωQ/ω0). С учётом (5.14),

    φz(ω)= - arctg(ΔСВ∙Q/СВ) (9.22)

    Из последнего выражения следует, что даже при линейной зависимости ΔСВ от модулирующего сигнала, линейная фазовая модуляция возможна лишь при небольших расстройках контура относительно рабочей частоты генератора. Практически, линейный участок фазовая характеристика контура (рисунок 9.8б) имеет лишь при индексе модуляции Ψ ≤ 0,5. В [14] описана трёхконтурная схема фазового модулятора, которая при нелинейных искажениях менее 2% позволила получить индекс модуляции порядка 2 радиан. Схема частотной модуляции с трёхконтурным фазовым модулятором представлена на рисунке 9.9



    Рисунок 9.9 – Схема частотной модуляции с 3-х контурным фазовым модулятором

    В этой схеме ёмкость интегрирующей цепи определяется суммой ёмкостей трёх конденсаторов С.

    Основной недостаток рассмотренных схем – паразитная амплитудная модуляция, которая появляется вследствие изменения эквивалентного сопротивления контура при его расстройке.

    На рисунке 9.10 представлена мостовая схема фазового модулятора свободная от этого недостатка [15].



    Рисунок 9.10 – Схема ЧМ с мостовым фазовым модулятором

    В этой схеме инверсный усилитель с разделённой нагрузкой обеспечивает два противофазных и равных по величине напряжения u1 и u2.

    Электрический мост образуют два нагрузочных резистора, резистор R1 и реактивная цепь, состоящая из ёмкости варикапа СВ и индуктивности L. Принцип работы фазового модулятора иллюстрируется векторной диаграммой на рисунке 9.10. К одной диагонали моста приложена сумма напряжений u1 + u2, а выходное напряжение и снимается с другой диагонали. Поскольку напряжения на реактивной цепи (+ uL) и на резисторе R1(uR) всегда сдвинуты по фазе на 900, вектор выходного напряжения (и) изменяет своё положение в зависимости от величины сопротивления реактивной цепи, оставаясь постоянным по величине. Сопротивление реактивной цепи (Х) модулируется информационным сигналом (иΩ) с помощью ёмкости варикапа . Такой модулятор позволяет получить индекс модуляции порядка одного радиана при допустимых нелинейных искажениях без паразитной амплитудной модуляции.

    В радиопередатчиках УКВ-ЧМ вещания, производства 60-х – 70-х годов, для частотной модуляции использовалась схема фазового модулятора, структурная схема которого представлена на рисунке 9.11.



    Рисунок 9.11 – Схема ЧМ с импульсно-фазовым модулятором

    На рисунке приняты следующие обозначения: ОГ – опорный генератор; ГПН – генератор пилообразного напряжения; ШИМ – широтно-импульсный модулятор; ГКИ –генератор коротких импульсов; – умножитель частоты. Диаграммы напряжений в некоторых точках схемы представлены на рисунке 9.12.



    Рисунок 9.12 – Диаграмма напряжений в фазовом модуляторе

    Первый график на диаграмме иллюстрирует форму напряжения на выходе ГПН; здесь же показано модулирующее напряжение uΩ(t) на входе ШИМ, в качестве которого используется компаратор. В результате сравнения пилообразного и модулирующего напряжений на выходе ШИМ, получается импульсный сигнал, модулированный по длительности. ГКИ генерирует импульсы, положение которых синхронизировано с задними фронтами импульсов с ШИМ. В результате на входе умножителя частоты формируется сигнал с фазо-импульсной модуляцией. В качестве умножителя частоты может быть использован генератор с внешним возбуждением, контур которого настраивается на n-ю гармонику импульсной последовательности ГКИ. Таким образом, на выходе устройства получаем гармонический сигнал с фазовой модуляцией. Поскольку модулирующий сигнал проходит на вход ШИМ через интегрирующую RC цепь, ФМ преобразуется в ЧМ.

    Если бы пилообразное напряжение ГПН имело идеальную форму с вертикальным передним фронтом, положение импульсов ГКИ можно было бы менять в пределах всего периода средней (несущей) частоты. При этом индекс модуляции составил бы 3,14 радиана. Реально же, вследствие конечной длительности фронта, удаётся получить индекс порядка 2,6 радиан. С помощью умножителя индекс частотной модуляции увеличивается соответственно в n раз. Благодаря линейному нарастанию пилообразного напряжения такое устройство обеспечивает высокое качество частотной модуляции (минимальные нелинейные искажения).

    Определим необходимую кратность умножения частоты при использовании такого модулятора для УКВ-ЧМ радиовещания. Согласно ГОСТ девиация частоты на выходе передатчика должна составлять 50 кГц [16]. Это означает, что на нижней звуковой частоте 30 Гц индекс ЧМ составит 1667 радиан, а необходимая кратность умножения частоты n=1667/2,6=641 раз. При такой кратности умножения и большой величине индекса модуляции, спектры соседних гармоник, также модулированных по частоте, начинают перекрываться. Отделить помеху основному сигналу становится невозможно, и она воспринимается как повышенный уровень шумов.

    По мере ужесточения требований к допустимому уровню шумов от косвенных методов ЧМ в радиовещании пришлось отказаться. В современных разработках радиовещательных передатчиков исключительное применение находят прямые методы частотной модуляции с автоподстройкой средней частоты по опорному генератору.

     Радиопередатчики цифровой информации

     

    Исторически передача информации на расстоянии впервые осуществлялась (в современном понимании) именно в цифровой форме. Таковыми безусловно были «азбука» Морзе, телеграфный код Боде, при использовании которых передача информации осуществлялась в виде последовательности токовых и безтоковых посылок. В современном понимании цифровой сигнал это последовательность элементарных символов, обозначаемых как «0» и «1», сочетание которых в определённом порядке (коде) позволяет зашифровать и передать практически любую информацию. Элементарный символ получил название «бит», а группа символов из 8 битов (23) образовали своеобразное слово «байт». 1024 байта (210) назвали «килобайт»; 210 килобайт – «мегабайт», и т.д. - «гигабайт», «терабайт»….

    Скорость передачи цифровой информации оценивается числом битов (байтов) передаваемых в секунду. Единица измерения скорости при телеграфии получила название «бод» (бит/с). В литературе, посвящённой передаче цифровой информации, на ряду с термином бод используются термины бит/с, кбайт/с и т.д.. Следует иметь в виду, что в современных телекоммуникационных системах понятие бод и бит/с не совпадают, т.к. в таких системах одному символу могут соответствовать десятки – сотни битов инфор-мации. Кроме этого, бодами выражают полную ёмкость канала, включая служебные символы (биты), если они есть. Эффективная же скорость канала выражается, например битами в секунду (бит/c, bps), несущими основную информацию.

    Для передачи цифрового сигнала по радиоканалу его необходимо перенести на несущую частоту. Этот процесс осуществляется аналогично модуляции и называется «манипуляция» (используется и термин «телеграфия»). Соответственно возможна амплитудная телеграфия (АТ), частотная (ЧТ), фазовая (ФТ). Возможны и комбинированные способы манипуляции, например амплитудно-фазовая.

     

    Амплитудная манипуляция

    Амплитудная манипуляция, именуемая в зарубежной и переводной литературе как ASK (amplitude switching key), относится к простейшему виду манипуляции, применяемому в очень редких, как правило, экстремальных ситуациях.

    На рисунке 11.1 представлена форма спектра исходного информационного сигнала для случая периодической и случайной последовательностей 0 и 1. В первом случае спектр цифрового сигнала имеет дискретный характер, в котором отсутствуют гармоники битовой частоты F=1/T (или чётные гармоники частоты импульсной последовательности F/2). Во втором случае, спектр - сплошной. При этом огибающая спектра описывается выражением 11.1.

    (11.1)

     



    Рисунок 11.1 – Спектры битовой последовательности

    Способ осуществления АТ иллюстрируется рисунком 11.2 и заключается по существу в амплитудной модуляции несущего колебания импульсным сигналом.



    Рисунок 11.2 – Амплитудная манипуляция

     

    Спектр импульсов прямоугольной формы теоретически бесконечен и не пригоден для передачи по каналам с ограниченной полосой. Поэтому импульсы «скругляют» существенно ограничивая полосу их спектра с помощью фильтров нижних частот. В качестве таких фильтров часто используют фильтры с «гауссовской» характеристикой, которые превращают прямоугольные импульсы в колоколообразные, как показано на рисунке 11.3.

    Спектр амплитудной манипуляции формируется также как спектр амплитудной модуляции.



    Рисунок 11.3 – Спектры при амплитудной манипуляции

     

    В передатчике амплитудную манипуляцию осуществляют одновременно в двух ступенях усилительного тракта по цепи смещения на управляю-

     

    щем электроде АЭ. Это необходимо в связи с тем, что при манипуляции одной ступени на управляющем электроде АЭ остаётся немодулированное напряжение возбуждения, которое через проходную ёмкость закрытого АЭ проходит к последующим усилительным каскадам и в результате значительного усиления может полностью перекрыть паузу между радиоимпульсами. При манипуляции в двух ступенях на входе второй из них возбуждение практически отсутствует; в результате обеспечивается надежное запирание в паузах всего передатчика.

    Режим работы усилительных каскадов передатчика при АТ выбирают слабо перенапряжённым, в котором происходит ограничение сигнала по амплитуде выходного напряжения. Тем самым обеспечивается стабильность уровня радиоимпульсов и устраняется фоновая модуляция по управляющему электроду АЭ. При этом, однако, существенно повышаются требования к характеристикам источника коллекторного питания выходной ступени, т.к. переходные процессы в фильтре выпрямителя могут привести к значительному искажению формы радиоимпульса, а при колебательном переходном процессе возможно даже его дробление. Эта особенность иллюстрируется рисунком 11.4.



    Рисунок 11.4 – Переходный процесс в источнике

    коллекторного питания

     

    К достоинствам АТ можно отнести простоту практической реализации. Основной недостаток - очень низкая помехоустойчивость, т.к. в паузах радиосигнала помеха может изменить значение бита информации ( например, с 0 на 1).

     

    Частотная манипуляция

    При частотной манипуляции (ЧТ, FSK) 0 и 1 соответствуют различные значения несущей частоты при постоянной амплитуде. Отсутствие пауз в сигнале существенно повышает отношение сигнал/помеха, что и определяет преимущество ЧТ перед АТ.

    Простейший вариант реализации ЧТ представлен на рисунке 11.5.


    Рисунок 11.5 – Частотная манипуляция

    Телеграфный ключ S в соответствии с последовательностью 0 и 1 переключает на вход усилителя мощности частоты генераторов f1, f2. Причём 0 обычно соответствует меньшая из них. Поскольку генераторы в такой схеме работают независимо друг от друга, в момент перехода от одной частоты к другой происходит скачкообразное изменение фазы, т.е. помимо частотной манипуляции возникает паразитная фазовая манипуляция. Это приводит к заметному расширению полосы частот занимаемых сигналом.

    На практике используется другая схема ЧТ, в которой исключается разрыв фазы в момент изменения частоты. Такая схема представлена на рисунке 11.6.



    Рисунок 11.6 – Схема ЧТ без разрыва фазы

     

    На вход смесителя (СМ) от высокостабильного возбудителя подаются две частоты f и Δf. На выходе смесителя получают две частоты со сдвигом 2Δf. Информационный битовый поток переключает эти частоты с помощью электронного коммутатора (ЭК). В результате на выходе ЭК ( в узле «а»)частотная манипуляция ни чем не отличается от ЧТ в схеме на рисунке 11.5, т.е. манипуляция происходит с разрывом фазы. Чтобы устранить скачки фазы в моменты перехода с одной частоты на другую, в схему введён управляемый автогенератор (ГПД), частота которого приводится к частотам f ±Δf c помощью системы автоподстройки, включающей смеситель (СМ), фильтр нижних частот (Ф) и управляющий элемент (УЭ). Аналогичные системы автоподстройки частоты уже рассматривались в разделах 5 и 9.

    Поскольку контур автогенератора является инерционной системой, напряжение на его выходе не может измениться скачком при смене частоты. В результате паразитная фазовая модуляция устраняется.

    Для анализа спектра частотной манипуляции представим сигнал ЧТ в виде суммы двух сигналов с амплитудной манипуляцией (см. рисунок 11.7) на разных несущих частотах. Спектр каждого из этих сигналов нам известен из раздела 11.1. Суммируя спектры сигналов с АТ, получим спектр частотной манипуляции.



    Рисунок 11.7 – Спектр частотной манипуляции

     

    Анализируя спектр ЧТ, можно сделать вывод, что сдвиг частот 2Δf не должен превышать полосы частот, занимаемых спектром составляющих его сигналов АТ’ и АТ”. В противном случае, наложение спектров 0 и 1 друг на друга будет создавать взаимные помехи при приёме.

    Наложение спектров допустимо лишь в случае ортогональности сигналов АТ’ и АТ”на интервале Т. Для этого необходимо выполнить условие



    Вычисляя интеграл, получим



    Поскольку (ω2+ω1) >> (ω2 -ω1), вторым слагаемым в полученном выражении можно пренебречь. В результате получаем условие ортогональности (взаимной независимости) сигналов АТ’ и АТ” в виде.

    sin2π(f2 -f1)T = sin4πΔf∙T=0 или

    2Δf=n/2T (11.2)

    Здесь n – любое целое число. Таким образом, минимальный сдвиг частот, при котором обеспечивается ортогональность сигналов АТ’ и АТ” равен 1/2Т (напомним, что Т – длительность элементарной посылки).

    Частотная манипуляция с таким сдвигом частот получила название «минимальная частотная манипуляция» (MSK). Этот вид манипуляции широко используется в системах мобильной радиосвязи (GSM, DECT).







    При передаче двух сообщений методом ЧТ в соседних каналах, передатчик излучает одновременно две частоты из четырёх, принадлежащих разным каналам. В результате биения этих частот, возникает амплитудная модуляция выходного колебания. Таким образом, как и при амплитудной модуляции, такая двухканальная манипуляция приведёт к существенному снижению помехоустойчивости приёма, т.е. будет утрачено основное достоинство частотной манипуляции.

    Двухканальная частотная манипуляция (ДЧТ), применяемая на практике, существенно отличается от приведенного примера. Чтобы амплитудная модуляция не возникала, каждой ситуации в соседних каналах приписывают определённое значение частоты передатчика (см. Табл.11.1).

     

    Таблица 11.1

    Канал 1

    Канал 2

    Частота







    f1







    f2







    f3







    f4

     

     

    В результате в любой момент времени передатчик излучает только одну частоту из четырёх и амплитуда колебаний остаётся постоянной. Тем самым, обеспечивается высокая помехоустойчивость при ДЧТ. Частота f1 самая низкая, а f4 самая высокая. Интервал между соседними частотами определяет сдвиг частот 2Δf.

    При ДЧТ битовые последовательности в каналах должны быть синхронизированы, т.е. переходы от 0 к 1 и наоборот, должны происходить в одни и те же моменты времени. В противном случае частота переключений резко возрастает (см. рисунок 11.8), соответственно увеличивается полоса занимаемых частот и возрастает вероятность пропадания узких импульсов из-за конечной длительности фронтов.



    Рисунок 11.8 – ДЧТ при синхронной и асинхронной

    передаче информации в каналах

    Один из возможных вариантов реализации ДЧТ в упрощенном виде представлен на рисунке 11.9.



    Рисунок 11.9 – Структурная схема ДЧТ

    На вход первого смесителя от высокостабильного возбудителя поступают частота несущей f и частоты определяющие величину сдвига Δf и 3Δf. На электронный коммутатор (ЭК) поступают частоты f1 ÷ f4 , которые в зависимости от состояния каналов, переключаются в соответствии с табл.11.1. Разрыв фазы в моменты коммутации устраняется системой автоподстройки частоты подобно схеме ЧТ.

     

     
    1   ...   32   33   34   35   36   37   38   39   40


    написать администратору сайта