Экзаменационные ответы по электротехническим материалам. Шпаргалка Электротехнические материалы. 1 Классификация материалов. Атомнокристаллическое строение и виды связи в материалах. Влияние дефектов на свойства материалов
Скачать 1.25 Mb.
|
19 Неразрушающий метод контроля изоляции. Для контроля состояния изоляции могут быть использованы многие методы физического и химического анализа, однако в заводских лабораториях и в энергосистемах применяются главным образом электрические методы неразрушающих испытаний, которые базируются на двух основных явлениях, возникающих в диэлектриках под действием слабых электрических полей: электропроводности и электрической поляризации. Чем больше в изоляции загрязняющих примесей, тем выше ее электропроводность и тем ниже электрическая прочность. Поэтому проводимость или обратная ей величина – сопротивление утечки изоляции – могут служить косвенными показателями степени загрязненности и, следовательно, общего состояния изоляции. Процесс поляризации в реальных диэлектриках сопровождается рассеянием энергии – диэлектрическими потерями, которые характеризуются величиной tgδ. Таким образом, tgδ, как и сопротивление утечки, может служить косвенным показателем состояния изоляции. В комбинированной изоляции, состоящей из нескольких диэлектриков с разными характеристиками, наблюдается специфическое явление накопления на границах диэлектриков зарядов, именуемых зарядами абсорбции. Это явление связано с различием свойств отдельных слоев и называется миграционной поляризацией. Таким образом, заряд абсорбции и связанные с ним явления характеризуют неоднородность изоляции. Величины, связанные с явлением миграционной поляризации, могут служить показателями состояния изоляции и использоваться для целей контроля. Контроль изоляции по tgδ Контроль изоляции по tgδ является одним из наиболее распространенных. Как показывает опыт, по значению tgδ можно установить наличие в изоляции различных по характеру дефектов. При испытаниях некоторых видов оборудования tgδ изоляции измеряют при нескольких напряжениях в интервале, примерно 0,5–1,5Uраб, и строят зависимость tgδ = f(U), по которой иногда можно судить не только о наличии, но и о характере дефектов в изоляции (рисунок 1). У изоляции нормального качества значение tgδ при напряжениях до 1,5Uраб в большинстве случаев остается практически неизменным (кривая 1 на рисунке 1). В случае изоляции с газовыми включениями после возникновения частичных разрядов (Uчр) tgδ с ростом напряжения увеличивается вследствие рассеяния в разрядах дополнительной энергии (кривая 2 на рисунке 1). Рисунок 1 – Зависимости tgδ изоляции от напряжения 1 — изоляция нормального качества; 2 — изоляция с газовыми включениями Методы контроля с использованием явления абсорбции Контроль изоляции по «возвратному» напряжению. По форме и величине «возвратного» напряжения можно судить о состоянии изоляции. Например, неравномерное увлажнение многослойной изоляции обнаруживается по увеличению «возвратного» напряжения. Контроль изоляции по «кривой саморазряда». В случае идеально однородной изоляции «кривая саморазряда» есть просто экспонента. Если ее построить в полулогарифмическом масштабе, то она будет иметь вид прямой. Для неоднородной изоляции «кривая саморазряда» в том же масштабе, как сумма экспонент, уже не будет прямой. Чем больше она отклоняется от прямой линии, тем сильнее неоднородность изоляции. Контроль изоляции по току утечки. Измерения тока в цепи испытуемой изоляции при включении ее на постоянное напряжение позволяют выявлять как частичное, так и сквозное увлажнение изоляции. Контроль изоляции по сопротивлению утечки. По сопротивлению (или току) утечки можно судить о наличии в изоляции не только распределенных, но и сосредоточенных дефектов. Контроль изоляции по емкостным характеристикам. По емкостным характеристикам наиболее эффективно выявляется увлажнение маслонаполненной изоляции. 20 Классификация проводников. Электропроводность металлов. ТермоЭДС проводников. Существует деление проводников по механизму прохождения тока. Если ток обусловлен дрейфом свободных электронов под воздействием электрического поля, то такие проводники называются проводниками с электронной электропроводностью или проводниками первого рода. Проводниками второго рода являются электролиты, прохождение тока через которые обусловлено ионной электропроводностью, а она, как известно, связана с переносом вещества в соответствии с законами Фарадея. Поэтому состав электролита постепенно меняется, а на электродах выделяются продукты электролиза. Проводники с электронной электропроводностью — это металлы и сплавы металлов. Металлические проводники классифицируют по разным признакам: 1) по составу (чистые металлы и сплавы); 2) по значению проводимости (проводники высокой проводимости, имеющие удельное сопротивление при 20 ос не более 0,05 мкОм м, и проводники высокого сопротивления, у которых значение удельного сопротивления при 20 ос не менее 0,3 мкОм м); 3) по положению в периодической системе элементов Д.И. Менделеева (щелочные металлы, благородные, щелочноземельные, многовалентные простые, актиниды, переходные и редкоземельные); 4) по особенностям строения электронных оболочек: нормальные и переходные металлы. К первой группе относятся металлы, используемые для проводов, токопроводящих жил кабелей, обмоток электрических машин и трансформаторов. Все газы и пары, в том числе пары металлов, при малых напряженно тях поля не являются проводниками. Однако если напряженность поля превысит некоторое критическое значение, при котором начинается фотонная и ударная ионизация, то газ становится проводником с электронной и ионной электропроводностью. Сильно ионизированный газ при равенстве числа электронов числу положительных ионов в единице объема оказывается особой проводящей средой, так называемой плазмой. Электропроводность - способность вещества проводить постоянный электрический ток под действием не изменяющегося во времени электрического поля. Металлы обычно характеризуются как вещества пластичные с характерным «металлическим» блеском, хорошо проводящие электрический ток и теплоту. Для электропроводности металлов типичны: низкое значение удельного сопротивления при нормальной температуре, значительный рост сопротивления при повышении температуры, достаточно близкий к прямой пропорциональности; при понижении температуры до температуры, близких к абсолютному нулю, сопротивление металлов уменьшается до очень малых значений, составляющих для наиболее чистых металлов до 10-3 или даже меньшую долю сопротивления при нормальных, + 20 0С, температурах. ТермоЭДС возникает при соприкосновении двух различных проводников (или полупроводников), если температура их спаев неодинакова. Если два различных проводника соприкасаются, то между ними возникает контактная разность потенциалов. Для металлов А и В Ucb - Uc+ К Т / е ln(n0с / nоb), где Uс и Ub- потенциалы соприкасающихся металлов; концентрация электронов в соответствующих металлах; К - постоянная Болъцмана; Т - температура; е - абсолютная величина заряда электрона. Если температура спаев металлов одинакова, то сумма разности потенциалов в замкнутой цепи равна нулю. Если же температура слоев различна (Т2 и Т1, например ), то в этом случае U= К / е (Т1 -Т2) ln(nc/ пb). На практике это выражение не всегда соблюдается, и зависимость термоЭДС от температуры может быть нелинейной. Провод, составленный из двух изолированных проволок разных металлов или сплавов, называется термопарой и используется для измерения температур. В таких случаях стараются использоватъ материалы, имеющие большой и стабильный коэффициент термоЭдС. для измерения высоких температур иногда приходится (особенно при измерении температур в агрессивных средах) применять термопары с меньшими коэффициентами термоЭдС, но выдерживающими высокие температуры и не окисляющиеся в агрессивных средах. Во многих случаях термопары приходится защищать металлическими или керамическими кожухами. Катушки измерительных приборов, добавочные резисторы и шунты в них приходится подбирать с минимальными коэффициентами термоЭдС относительно меди, чтобы избежать появления паразитных термоЭдС. которые могут вызвать дополнительные погрешности измерения. Сплавы для термопар имеют различные сочетания, в том числе один электрод может быть из чистого металла. Наиболее распространенными являются никелевые и медно-никелевые сплавы. Для температур в пределах 1000 – 1200 0С используются термопары хромель – алюмель (ТХА), при более высоких температурах применяются электроды платина – платинородий; в этих сплавах родия составляет от 6,7 до 40,5 %. Марки таких термопар следующие: ПлРд-7, ПлРд-10, ПлРд-30, ПлРд-40. 21 Материалы высокого сопротивления. Тензометры. К материалам высокого сопротивления относятся металлы и сплавы, используемые для электроизмерительных приборов, резисторов. У них помимо высокого удельного сопротивления должны быть высокая стабильность сопротивления во времени, малый температурный коэффициент удельного сопротивления, малая термоЭДС в паре с медью. Иногда они должны работать при высоких температурах, быть технологичными и по возможности не содержать дорогостоящих компонентов. Резистивные материалы должны иметь высокое удельное сопротивление. обладать высокой коррозиционной стойкостью, высокой стабильностью и малой термоЭДС в паре с медью. В зависимости от назначения, условий эксплуатации, с учетом номинального сопротивления в качестве материалов для резисторов применяют металлы и сплавы с высоким удельным сопротивлением, а также оксиды металлов, углерод, композиционные материалы (иногда на основе благородных металлов - платины, палладия, золота и серебра). Конструктивно резисторы выполняются в виде объемных элементов, проволоки различных диаметров и пленки, осаждаемой на диэлектрическое основание (подложку). для пленок введен параметр - сопротивление квадрата, или сопротивление на квадрат (или удельное поверхностное сопротивление), численно равное сопротивлению участка пленки, длина которого равна его ширине, при протекании тока параллельно поверхности подложки. Сопротивление квадрата определяется по формуле Rk = / d где - удельное объемное сопротивление пленки толщиной d. Для резисторов и термопар наиболее распространенными являются сплавы типа манганина. Это сплавы на никелевой и медно-никелевой основе. Сплавы. применяемые в преобразователях деформации различных изделий под действием механических сил, называются тензометрическими. В основу работы тензопреобразователей принцип изменения сопротивления при деформации конструкции, на которую наклеен тензодатчик, Коэффициент тензочувствительности оценится d = R / R / L / L. или d = 1 + / ( E S) / F + 2 , (3.4) где R- изменение сопротивления R при изменении L длины элемента L; - изменение удельного сопротивления материала тензодатчика под влиянием нагрузки F; S- площадь поперечного сечения проволоки преобразователя: Е - модуль IОнга; - коэффициент Пуассона материала проволоки. Наиболее часто длятензометров применяется проволока, наклеиваемая зигзагообразно на лаковую или бумажную основу (диаметр проволоки примерно 0,02 0,05 мм ). К концам проволоки пайкой или сваркой гюдсоединяются выводные проводники, как правило, медные. Сверху датчик лакируется. И приклеивается к изделию. Материалами для проволоки могут быть различные металлы и сплавы. например манганин, константан, нихром, никель, висмут, платиносеребряные или титаноалюминиевые сплавы, хотя они чаще применяется для изготовления пленочных тензометров (сплав АЛI9. Д20 и др.). Пленочные тензометры получают путем вакуумной возгонки материала и последующей его конденсацией на подложку. Часто применяются фольговые тензометры из весьма тонкой фольги толщиной 4 -12 мкм, на которой часть металла выбрана травлением таким образом, что оставшаяся часть образует так называемую “решетку’ - зигзагообразный тензометр. 22 Контактные материалы. В качестве контактных материалов используются чистые тугоплавкие металлы и различные сплавы, а также металлокерамические композиции. Наиболее ответственные контакты служат для периодического замыкания и размыкания электрических цепей, особенно сильно точных. По условиям работы контакты делят на неподвижные, разрывные или скользящие, к ним предъявляются разные требования, и, следовательно, используются разные материалы. По значению коммутируемого тока контакты делят на слаботочные - до единиц ампера и сильноточные - для токов от единиц до тысяч ампер. Контакт должен быть надежным соединением двух проводников, способных проводить электрический ток с малым и стабильным во времени электрическим сопротивлением. Структура площади контакта состоит из: “площадок” с металлическим контактом, сопротивление которых определяется суммарным сопротивлением металлов пары, образующих контакт, через который протекает ток без переходного сопротивления; контактных площадок, покрытых тонкими адгезионными пленками, пропускающими ток благодаря туннельному эффекту; площадок, покрытых пленками оксидов и сульфидов, являющимися изолирующими и не пропускающими электрический ток. Общая площадь контакта, опредёляемая как сумма этих площадок, оказывается значительно меныпе контактной поверхности, представляющей условную площадь контакта. При этом состояние поверхностей контактов непосредственно влияет на переходное сопротивление и нагрев контактов при прохождении через них тока. Переходное сопротивление многоточечного контакта, имеющего п контактирующих поверхностей первого вида, если они все нагружены до предела текучести материала контактов, определяется по формуле Rn = / 2 ( / (nF)1/2 где - удельное сопротивление материала контактов; - предел текучести материала контактов при сжатии; n- число коyтактирующих поверхностей; F- сила контактного cжатия. Если контакты плоские, то их переходное сопротивление обратно пропорционально силе нажатия F. Основные причины износа контактов при их эксплуатации зависят от условий эксплуатации. но сводятся к следующим эрозия контактов - нарушение формы рабочих поверхностей. перенос материала с одного контакта на другой, образование кратеров. наростов и даже заклинивание контактов; электрический износ контактов, обусловленный электрической дугой, искрением Контактов при размыкании и вибрацией контактов; механический износ, связанный не только с силой удара контактов, но и с контактным нажатием и частотой замыканий контакта; химический износ, на который влияют состав окружающей среды, ее влажность и температура на поверхности контактов; сваривание в отрыв в зависимости от силы контактного нажатия, вибрации и термического действия тока на контакты, усилие при размыкании сварившихся контактов и плохое прикрепление контактов к контактодержателю. В качестве материалов для слаботочных контактов обычно используются благородные и тугоплавкие металлы - серебро, платина, палладий, золото, вольфрам и их сплавы. Большинство благородных металлов обычно применяют для контактов в виде гальванического покрытия (кроме серебра, которое может применяться в чистом виде). Твердость покрытий в этом случае существенно выше, чем у более толстых слоев металла. Например, для серебра твердость по Бринеллю составляет в толстом слое порядка 25, а в виде Гальванического покрытия может достигать 100. Гальванические покрытия более износостойки в электрическом поле. Толщина гальванопокрытия обычно колеблется в пределах от 1 мкм до нескольких десятков микрометров. Для сильноточных контактов обычно используются медь, серебро, их сплавы, а также композиционные материалы, получаемые методом порошковой металлургии, состоящие из компонентов, не обладающих взаимной диффузией и представляющих смесь обычно двух - трех фаз, одна из которых значительно более тугоплавкая, чем другая. Наиболее распространенные композиции - это серебро - оксид кадмия; серебро – никель; серебро - графит; серебро - никель - графит; серебро - вольфрам; серебро - оксид меди; медь - вольфрам; медь - графит. Серебро и медь обеспечивают высокую электра и теплопроводность, а тугоплавкая часть повышает износостойкость, термостойкость и сопротивление свариванию контактов В низковольтных аппаратах часто используется серебро - оксид кадмия; для высоковольтных (дугогасительных камер) - железо - медь - висмут и др. 23 Припои, флюсы, контактолы. Припои, флюсы, контактолы применяются для создания механически прочного, герметичного шва или постоянного электрического контакта с малым переходным сопротивлением. При пайке припои нагреваются до температуры плавления, в зависимости от которой их принято делить на две группы - мягкие и твердые. К мягким припоям - относятся припои с температурой плавления до 300 0С, а к твердым - выше 300 0С. Мягкие припои в основном являются оловянно-свинцовыми согласно ГОСТ 21931-76. Если в припое содержится 1 – 5 % сурьмы, то они называются сурьмянистыми. Наиболее распространенными из мягких припоев являются: ПОС-61, в котором 61 % Sn, остальные % - свинец ( температура кристаллизации 190 0С, удельное сопротивление ρ = 139 мкОм м ); ПОССу-61-0,5 - оловянно-свинцовый, малосурьмянистый, содержащий 61 % Sn, 5 % сурьмы, остальные % - свинец (температура кристаллизации 189 0С. удельное сопротивление ρ = 0,140 мкОм м ); ПОСК-5О-18 - припой, содержащий 50 % Sn, 18 % кадмия, остальные % - свинец ( температура кристаллизации 145 ° С, удельное сопротивление ρ = 0,133 мкОм м). Эти припои применяются для лужения и пайки монтажных проводов (диаметром 0,05 -0,08 мм), спиральных пружинок в электроизмерительных приборах, резисторов, конденсаторов, печатных схем и при производстве полупроводниковых приборов, для лужения и пайки пассивной части микросхем и других элементов, чувствительных к перегреву. Стандартными твердыми припоями являются медно-цинковые и серебряные. Наиболее распространенными из них являются следующие: ПМЦ-36 - припой медно-цинковый, содержащий 36 % Сu, остальные % - цинк (температура кристаллизации 950 0С, используется для пайки латуни с содержанием меди до 64 % ); ПСР- 25 и до ПСР-70 - серебряные припои, содержащие от 25 до 70 % Аg, меди - от 40 до 26 %, цинка - от 35 до 4 % ( температура их кристаллизации около 600 - 750 °С). Для пайки алюминия применяют специальные припои. Из них наиболее распространены П425А ( температура плавления 415 - 425 0С), в составе которого 19 - 21 % М, 14 – 16 % Сu, 64 – 66 % Zn; ПСИЛО ( силумин), состоящий из 90 – 87 % А1 + 10 – 13 % Si ( температура плавления 577 0С); АВИА-1 - сплав. в котором содержится 55 % Sn, 20 % Сd, 22 % Zn, ( температура плавления 200 0С). При пайке алюминия низкотемпературными припоями (АВИА-1 и др.) его поверхность предварительно должна быть покрыта никелем. Фосфорные припои марки МФI и прочие с содержанием фосфора в сплаве (Сu - Р) от 8,5 до 10 %, имеющие температуру плавления 725-850 0С, являются самофлюсующимися, т.е. пайка ими производится без применения флюса. Недостаток их - хрупкость шва. Стали не пригодны для пайки. Используются для пайки медных, латунных, бронзовых деталей, работающих в режимах малых статических нагрузок. Иногда в качестве припоев используют чистые металлы. Например, кадмий применяют для пайки и лужения никеля, чистое олово для лужения и пайки меди и ее сплавов, низкоуглеродистой стали и платины, а чистая медь - для пайки низкоуглеродистой стали и никеля. В качестве флюсов используется очень большое количество материалов. Назначение флюсов - удалять загрязнение и оксиды с поверхности спаиваемых металлов, уменьшать поверхностное натяжение расплавленного припоя, защищать поверхность металла и припоя в процессе пайки от окисления. Флюсы подразделяются на несколько групп по различным признакам. Флюсы, применяемые при пайке мягкими припоями в основном с активными неорганическими веществами. Активные флюсы к ним относятся: канифоль (24 %), хлористый цинк (4 %), этиловый спирт(72 %) – для пайки черных, цветных и драгметаллов ( остатки флюса необходимо удалять растворителем); канифоль (16 %), хлористый цинк (4 %), вазелин технический (80 %), - при пайке черных и цветных металлов (шов прочный, но требует очень тщательной промывки) для изделий простой конфигурации; хлористый цинк (1.4 %), глицерин (3 %), спирт этиловый (4 %), вода дистиллированная (91,6 %) - при пайке платины, ее сплавов и никеля, с последующей тщательной промывкой в воде; флюс для пайки алюминия и его сплавов (хлористый барий – 4 %. хлористый калий – 29 %, хлористый натрий – 19 %. фтористый кальций – 4 % ) -пайка припоями марки АВИА-1 и АВИА-2. При пайке твердыми припоями используют обычно несколько марок флюсов. Наиболее популярные из них: Ф70А (температура плавления 370 0С) предназначен для пайки алюминия, его сплавов, как между собой, так и с другими металлами ( хлористый калий – 33 – 37 %. хлористый литий – 40 – 41 %. борофтористоводородный калий – 2 – 29 %); Ф8ООСт ( температура плавления 800 0С) предназначен для пайки нержавеющих сталей, жаропрочных сплавов латунью и другими твердыми припоями ( температура плавления 850 - 1100 0С). Такой припой представляет собой буру (тетраборнокислый натрий 100 %). Флюсы могут быть твердыми веществами (соли, оксиды, кислоты), пастами и растворами солей и кислот. Очень часто флюсы изготавливаются на местах, поэтому и марки идут не по стандартам. В марках флюсов буквы означают: Ф - флюс, К - канифоль, Сп - спирт, П - гюлиэфирная смола, У -уксусная кислота, М - муравьиная кислота, -Х хлористые соли и т.д. Контактолами ( иначе электропроводящий клей) называются мало-низкие или пастообразные композиции из различных синтетических смол, используемые в качестве токопроводящих клеев и покрытий. Токопроводящим наполнителем являются мелкодисперсные горошки металлов или графита для регулирования вязкости используют растворители. Полимерные связующие определяют низкую плотность, высокую прочность и эластичность, а также хорошие адгезионные свойства электропроводящих композиций. Электрические свойства определяются свойствами дисперсного наполнителя - его электропроводностью, концентрацией, формой и размером частиц, В настоящее время известно более 50 типов контактолов. Наиболее высокой проводимостью и стабильностью свойств обладают контактолы с содержанием серебра. Их используют для склеивания поверхностей серебра, меди, стекла, керамики. Если серебро предварительно обработано растворами жирных кислот, то такой клей используется для монтажа элементов радиоэлектроники, таких как ниточные резисторы, фоторезисторы и другие элементы. Некоторые виды клея, имеющие высокую термостойкость и большой срок службы, используются в производстве керамических конденсаторов и для монтажа интегральных схем. А контактол К-20 обладает максимальной для подобных материалов электропроводностью ( ρ = 0,5 мкОм м). |