Главная страница
Навигация по странице:

  • 36 Магнитные материалы: основные типы магнитного состояния вещества (по величине km), классификация

  • 37 Природа ферромагнетизма , доменная структура. Техническая кривая намагничивания и петля гистерезиса.

  • 38 Структура ферромагнетиков, магнитострикционная деформация, магнитная проницаемость

  • Экзаменационные ответы по электротехническим материалам. Шпаргалка Электротехнические материалы. 1 Классификация материалов. Атомнокристаллическое строение и виды связи в материалах. Влияние дефектов на свойства материалов


    Скачать 1.25 Mb.
    Название1 Классификация материалов. Атомнокристаллическое строение и виды связи в материалах. Влияние дефектов на свойства материалов
    АнкорЭкзаменационные ответы по электротехническим материалам
    Дата04.06.2022
    Размер1.25 Mb.
    Формат файлаdocx
    Имя файлаШпаргалка Электротехнические материалы.docx
    ТипДокументы
    #568769
    страница7 из 9
    1   2   3   4   5   6   7   8   9

    35 Физические процессы в биполярном транзисторе.

    В рабочем режиме биполярного транзистора протекают следующие физические процессы: инжекция, диффузия, рекомбинация и экстракция.

    Рассмотрим р-n переход эмиттер - база при условии, что длина базы велика. В этом случае при прямом смещении р-n перехода из эмиттера в базу инжектируются неосновные носители. Закон распределения инжектированных дырок рn(х) по базе описывается следующим уравнением:



    Схематически распределение инжектированных дырок рn(х) показано на рисунке 5.5.



    Рис. 5.5. Распределение инжектированных дырок в базе

    Процесс переноса инжектированных носителей через базу - диффузионный. Характерное рас-стояние, на которое неравновесные носители распространяются от области возмущения -диффузионная длина Lp. Поэтому, если необходимо, чтобы инжектированные носители достигли коллекторного перехода, длина базы W должна быть меньше диффузионной длины Lp. Это условие - W < Lp, является необходимым для реализации транзисторного эффекта - управление током во вторичной цепи через изменение тока в первичной цепи.

    В процессе диффузии через базу инжектированные неосновные носители рекомбинируют с основными носителями в базе. Для восполнения прорекомбинированных основных носителей в базе через внешний контакт должны подойти такое же количество носителей. Таким образом, ток базы - это рекомбинационный ток.

    Продиффундировавшие через базу без рекомбинации носители попадают в электрическое по-ле обратно смещенного коллекторного p-n перехода и экстрагируются из базы в коллектор. Таким образом, в БТ реализуются четыре физических процесса:

    • инжекция из эмиттера в базу;

    • диффузия через базу;

    • рекомбинация в базе;

    • экстракция из базы в коллектор.

    Эти процессы для одного типа носителей схематически показаны на рис. 5.6а, б



    Рис. 5.6. Зонная диаграмма биполярного транзистора:
    а) в равновесном состоянии; б) в активном режиме

    36 Магнитные материалы: основные типы магнитного состояния вещества (по величине km), классификация

    По реакции на внешнее магнитное поле и характеру внутреннего магнитного упорядочения все вещества в природе можно подразделить на пять групп: диамагнетики, парамагнетики, ферромагнетики, антиферромагнетики и ферримагнетики. Перечисленным видам магнетиков соответствуют пять различных видов магнитного состояния вещества: диамагнетизм, парамагнетизм, ферромагнетизм, антиферромагнетизм и ферримагнетизм.

    К диамагнетикам относят вещества, у которых магнитная восприимчивость отрицательна и не зависит от напряженности внешнего магнитного поля. К диамагнетикам относятся инертные газы, водород, азот, многие жидкости (вода, нефть и ее производные), ряд металлов (медь, серебро, золото, цинк, ртуть, галлий и др.), большинство полупроводников (кремний, германий, соединения АЗВ5, А2В6) и органических соединений, щелочно-галоидные кристаллы, неорганические стекла и др. Диамагнетиками являются все вещества с ковалентной химической связью и вещества в сверхпроводящем состоянии.

    К парамагнетикам относят вещества с положительной магнитной восприимчивостью, не зависящей от напряженности внешнего магнитного поля. К числу парамагнетиков относят кислород, окись азота, щелочные и щелочноземельные металлы, некоторые переходные металлы, соли железа, кобальта, никеля и редкоземельных элементов.

    К ферромагнетикам относят вещества с большой положительной магнитной восприимчивостью (до 106), которая сильно зависит от напряженности магнитного поля и температуры.

    Антиферромагнетиками являются вещества, в которых ниже некоторой температуры спонтанно возникает антипараллельная ориентация элементарных магнитных моментов одинаковых атомов или ионов кристаллической решетки. При нагревании антиферромагнетик испытывает фазовый переход в парамагнитное состояние. Антиферромагнетизм обнаружен у хрома, марганца и ряда редкоземельных элементов (Се, Nd, Sm, Тm и др.). Типичными антиферромагнетиками являются простейшие химические соединения на основе металлов переходной группы типа окислов, галогенидов, сульфидов, карбонатов и т.п.

    К ферримагнетикам относят вещества, магнитные свойства которых обусловлены нескомпенсированным антиферромагнетизмом. Подобно ферромагнетикам они обладают высокой магнитной восприимчивостью, которая существенно зависит от напряженности магнитного поля и температуры. Наряду с этим ферримагнетики характеризуются и рядом существенных отличий от ферромагнитных материалов.

    Свойствами ферримагнетиков обладают некоторые упорядоченные металлические сплавы, но, главным образом,- различные оксидные соединения, среди которых наибольший практический интерес представляют ферриты.
    37 Природа ферромагнетизма, доменная структура. Техническая кривая намагничивания и петля гистерезиса.

    Возникновение магнитных свойств у ферромагнетиков связано с их доменным строением. Домены — это области самопроизвольной намагниченности, возникающие даже в отсутствие внешнего магнитного поля, в которых магнитные моменты атомов ориентированы параллельно.

    Каждый реальный магнитный материал разделен по всему объему на множество замкнутых областей — доменов, в каждом из которых самопроизвольная намагниченность однородна и направлена по одной из осей легкой намагниченности.

    Такое состояние энергетически выгодно и кристалл в целом немагнитен, так как магнитные моменты доменов ориентированы в пространстве равновероятно. Между соседними доменами возникают граничные слои (стенки Блоха). Внутри доменных стенок векторы намагниченности плавно поворачиваются (рисунок 9.4). Объем доменов может колебаться в широких пределах (10-1 ¸10-6 см3). Рис. 9.4. Стенка Блоха



    Ширина границы между антипараллельными доменами для железа 13. 10-8 м, то есть около 500 элементарных ячеек. Толщина границы зависит главным образом от соотношения энергий: обменной, магнитной анизотропии и магнитоупругой. Размеры самих доменов зависят от неметаллических включений, границ зерен, скоплений дислокаций и других неоднородностей. Обычно домены имеют правильную форму.

    Намагничивание магнитных материалов (кривая намагничивания) Если образец был размагничен, то зависимость индукции от напряженности внешнего магнитного поля называется кривой намагничивания. В процессе намагничивания образца основную роль играют два процесса — смещение доменных границ и вращение векторов намагниченности доменов. На рисунке приведена кривая намагничивания.

     

    < Рис. 9.8. Намагничивание магнитного материала, 1 – слабое поле, 2 – среднее поле, 3 – сильное поле

    Магнитный гистерезис Магнитный гистерезис вызывается необратимыми процессами намагничивания. Ход кривой намагничивания предварительно размагниченного образца на рисунке 9.9 показан стрелкой.

     

    К основным параметрам петли гистерезиса относятся: Bs – индукция насыщения;

    Br – остаточная индукция;

    Hc – коэрцитивная сила (напряженность размагничивающего поля, при которой

    Br становится равной нулю).

      Для различных значений H можно получить семейство петель гистерезиса. Петля гистерезиса при Bs называется предельной.

    Основные стадии технического намагничивания показаны на рисунке 9.10 (схематически).

     I –Область очень слабых магнитных полей (H → 0) — линейная зависимость B от H и постоянное значение m (рисунок 9.11). Увеличение объема (рост) тех доменов, векторы намагниченности которых имеют наименьшие углы с направлением внешнего магнитного поля; их рост происходит за счет доменов, у которых эти углы наибольшие. Рост доменов происходит путем обратимого смещения их границ. На этом участке суммарная намагниченность образца становится отличной от нуля, и материал характеризуется начальной магнитной проницаемостью μн которую экспериментально определяют в полях с H ≈ 0,1 А/м. После снятия внешнего магнитного поля границы доменов снова возвращаются в прежнее положение и остаточная намагниченность не возникает.

    II – Область слабых и средних магнитных полей — крутой рост B и m при увеличении H. В конце этого участка m проходит через максимум и представляет собой максимальную магнитную проницаемость mм Процесс перемещения границ доменов необратим, т. е. после снятия внешнего магнитного поля доменная структура не возвращается в исходное состояние, и образец сохраняет какую-то техническую намагниченность. Переориентация магнитных моментов внутри доменов происходит не постепенно, а скачкообразно.

    К концу этого участка границы доменов исчезают, и образец превращается (в идеале) однодоменный, вектор намагниченности которого совпадает с направлением легкого намагничивания и составляет наименьший угол с направлением внешнего магнитного поля.

    III – Область сильных полей — небольшое увеличение В и значительное уменьшение m. [ ]. m = B m0H Постепенный поворот вектора намагниченности образца до полного совпадения с направлением внешнего магнитного поля H. В конце этого участка при H = Hs намагниченность

    M материала достигает значения намагниченности технического насыщения Ms (M → ) M s или, можно сказать, что магнитная индукция B материала достигает значения индукции технического насыщения Bs (B → ). Bs

    IV – Область насыщения — незначительное увеличение B (за счет парапроцесса, который заключается в гашении сильным полем дезориентирующего действия теплового поля) при увеличении Hs и приближение m к единице.

    Абсолютно строгую ориентацию всех спиновых магнитных моментов атомов внутри домена можно получить только при 0ºК, когда отсутствует дезориентирующее действие теплового движения.

    Рост температуры приводит к увеличению дезориентации спиновых магнитных моментов атомов. Дезориентирующее действие теплового движения компенсируется ориентирующим действием внешнего магнитного поля. B этом и заключается парапроцесс. Парапроцесс имеет место и в слабых полях, но здесь он перекрывается процессами смещения и вращения. В сильных полях, когда (B = Bs ), парапроцесс проявляется более отчетливо.

    В реальных ферро- и ферримагнетиках различные виды процессов намагничивания накладываются друг на друга. На процесс намагничивания, кроме того, влияют магнитострикция, механические напряжения, дефекты структуры и ряд других причин.

    38 Структура ферромагнетиков, магнитострикционная деформация, магнитная проницаемость

    Ферромагнетики в основном кристаллизируются в трех типах решеток: кубической, пространственной, кубической объемно-центрированной и гексонольной, показанной на рисунке 5.5.

    Зависимости В = f(Н) показывают, что кристаллы являются магнитоанизотропными. На рисунке эта зависимость показана для железа. Направления намагничивания указаны в квадратных скобках. При отсутствии внешнего поля векторы намагничивания располагаются в легком направлении. Площадь, заключенная между кривыми легкого и трудного намагничивания, пропорциональна энергии, которую требуется затратить для изменения направления намагничивания от легкого до трудного.



     

    Рис. 5.4. Доменная структура поликристалла

    Энергию естественной кристаллографической магнитной анизотропии –Ек характеризуют константами кристаллографической магнитной анизотропии. Для кубического кристалла

    ,

    где К0, К1, К2 – константы кристаллографической магнитной анизотропии;

    - направляющие косинусы вектора намагниченности по отношению к осям x, y, z ребер куба.

    магнитострикционная деформация - Это обратимое изменение формы и размеров образца при переходе ферромагнетика через точку Кюри при отсутствии внешнего поля (самопроизвольная магнитострикция) и при воздействии внешнего поля на ферромагнетик при Т<ТК

    Сумму энергий кристаллографической магнитной анизотропии и магнитоупругой результате магнитострикции называют энергией магнитной анизотропии.



    В технике используется несколько десятков видов магнитной проницаемости в зависимости от конкретных применений магнитного материала.

    Магнитная индукция и напряженность поля в изотропной среде связаны простым соотношением

    ,

    где  - абсолютная магнитная проницаемость, характеризующая магнитные свойства среды.

    Сравнивая магнитное поле тока в проводе, расположенном в данной среде и в вакууме, установили, что в зависимости от свойств среды (материала) поле получается более интенсивным, чем в вакууме (парамагнитные материалы), или наоборот, менее интенсивным (диамагнитные материалы).

    Таким образом, интенсивность магнитного поля, т.е. индукция В, зависит от среды, в которой существует поле.

    Абсолютная магнитная проницаемость вакуума называется магнитной постоянной  . В системе СИ для нее принято значение   Ом·с/м.

    Абсолютную магнитную проницаемость различных материалов и сред сравнивают с магнитной постоянной. Отношение абсолютной магнитной проницаемости какого-либо материала к магнитной постоянной называется магнитной проницаемостью   (или относительной магнитной проницаемостью), так что

    Магнитная проницаемость – отвлеченное число. Для диамагнитных материалов и сред  <1, например, для меди  =0,999995. Для парамагнитных материалов  >1, например для воздуха  =1,0000031. При технических расчетах магнитная проницаемость диамагнитных и парамагнитных материалов и сред принимается равной единице.

    У ферромагнитных материалов, играющих исключительную роль в электротехнике, магнитная проницаемость достигает десятков тысяч и зависит от магнитных свойств материала, температуры, интенсивности магнитного поля, т.е. величины индукции или от величины напряженности магнитного поля.

    Зависимость  показана на рис.5.5 . Начальная и максимальная проницаемости являются частными случаями нормальной проницаемости

    .

    При одновременном воздействии на магнитный материал постоянного   и  магнитных полей и обычно, при условии  << вводят понятие дифференциальной проницаемости 

    Зависимость  . Характер этой зависимости различен в слабых, средних и сильных полях. Для   при   наблюдается четко выраженный максимум, сглаживающийся при увеличении напряженности поля на рисунке 5.3. Возрастание   объясняется тем, что при нагревании облегчается смещение доменных границ и поворот векторов намагниченности доменов. Главным образом из-за уменьшения констант магнитострикции и магнитной анизотропии. Уменьшение   при высоких температурах связывается с резким уменьшением спонтанной намагниченности доменов.



    Рис.5.6 Зависимость магнитной проницаемости   от напряженности магнитного поля Н

    Зависимость  . Характер этой зависимости различен в слабых, средних и сильных полях. Для   при   наблюдается четко выраженный максимум, сглаживающийся при увеличении напряженности поля на рисунке 5.3. Возрастание   объясняется тем, что пр и нагревании облегчается смещение доменных границ и поворот векторов намагниченности доменов. Главным образом из-за уменьшения констант магнитострикции и магнитной анизотропии. Уменьшение   при высоких температурах связывается с резким уменьшением спонтанной намагниченности доменов.
    1   2   3   4   5   6   7   8   9


    написать администратору сайта