Главная страница
Навигация по странице:

  • 53. Ядро Windows NT

  • Планирование процессов и нитей

  • ос и с. ОСиС. 1. Классификация программного обеспечения


    Скачать 2.7 Mb.
    Название1. Классификация программного обеспечения
    Анкорос и с
    Дата11.12.2022
    Размер2.7 Mb.
    Формат файлаdoc
    Имя файлаОСиС.doc
    ТипДокументы
    #839260
    страница23 из 29
    1   ...   19   20   21   22   23   24   25   26   ...   29

    Области использования Windows NT


    Обладая высокой производительностью, стабильностью, развитыми средствами безопасности, и имея в своем арсенале широкий набор базовых системных функций, Windows NT Server может найти применения в различных областях, и, прежде всего он может быть использован в качестве сервера в корпоративной сети. Здесь весьма полезной оказывается его способность выполнять функции контроллера доменов, что позволяет структурировать сеть и тем самым упрощать задачи администрирования и управления. Он используется также в качестве файл-сервера, принт-сервера, сервера приложений, сервера удаленного доступа и сервера связи (программного маршрутизатора).

    Клиентами в сети с Windows NT Server могут являться компьютеры с установленными на них различными операционными системами. Стандартно поддерживаются: Windows NT Workstation, MS-DOS, OS/2, Windows for Workgroups, Windows 95, клоны UNIX, Macintosh. Основные клиенты входят в стандартную поставку Windows NT Server.

    Windows NT Server является мощной платформой для сложных сетевых приложений, особенно тех, которые построены с использованием технологии клиент-сервер. В сочетании с серверами BackOffice он может удовлетворить очень широкий круг потребностей корпоративных пользователей. Так, под управлением Windows NT Server может работать сервер баз данных SQL Server фирмы Microsoft, а также серверы баз данных других известных фирм, такие как серверы баз данных Oracle и Sybase, Adabas и InterBase.

    На платформе Windows NT Server может быть установлена мощная система администрирования Microsoft System Management Server, функциями которой является инвентаризация аппаратной и программной конфигурации компьютеров сети, автоматическая установка программных продуктов на рабочие станции, удаленное управление любым компьютером и мониторинг сети.

    Windows NT Server может использоваться как сервер связи с мэйнфреймами IBM и системами IBM AS400. Для этого создан специальный продукт Microsoft SNA Server, позволяющий легко объединить в одной сети IBM PC-совместимые рабочие станции и мощные мейнфреймы. SNA Sever является шлюзом, позволяющим осуществлять доступ к рабочей станции как к серверам локальной сети, так и к мэйнфреймам без необходимости использования двух сетевых карт или нескольких стеков сетевых протоколов. Это приводит к снижению стоимости оборудования и уменьшению объема требуемой оперативной памяти. Обеспечивая прозрачный доступ к мэйнфреймам, SNA Server, будучи интегрированным с системой безопасности NT Server, обеспечивает авторизацию доступа к хосту. SNA Server может работать с любым из протоколов, поддерживаемых в NT Server: IPX/SPX, TCP/IP или NetBEUI.

    Windows NT Server является платформой для Microsoft Exchange - нового высоко производительного пакета для коллективной работы, построенного на основе почтового сервера.

    Наконец, последняя версия Windows NT 4.0 является надежной платформой для приложений, ориентированных на Internet: Web-серверов, Web-броузеров, информационно-поисковых систем, систем электронной коммерции в сети Internet.

    Операционная система Windows NT Workstation позиционируется прежде всего как клиент в сетях Windows NT Server, а также в сетях NetWare, Unix, Vines. В сетях NetWare рабочие станции Windows NT восполняют известный пробел - отсутствие хорошего сервера приложений. Компьютер с установленной на нем Windows NT может быть рабочей станцией и в одноранговых сетях, выполняя одновременно функции и клиента, и сервера. Windows NT Workstation может применяться в качестве ОС автономного компьютера, если необходимы повышенная производительность или секретность, а также при реализации сложных графических приложений, например, в системах автоматизированного проектирования.

    53. Ядро Windows NT
    Микро – ядерная структура - основа стабильности системы
    При разработке структуры Windows NT была в значительной степени использована концепция микроядра. В соответствии с этой идеей ОС делится на несколько подсистем - серверов, каждая из которых выполняет отдельный набор сервисных функций - например, сервис памяти, сервис по созданию процессов или сервис по планированию процессов. Каждый сервер выполняется в пользовательском режиме, выполняя циклическую проверку, не появился ли запрос от клиента на одну из его сервисных функций. Клиент, которым может быть либо другая компонента ОС, либо прикладная программа, запрашивает сервис, посылая сообщение на сервер. Этот запрос перехватывается ядром, которое из-за ограниченности выполняемых функций в случае такой организации называется микроядром. Ядро ОС, работая в привилегированном режиме, доставляет сообщение нужному серверу. Сервер выполняет операцию, после чего ядро возвращает результаты клиенту с помощью другого сообщения (рисунок 1.1). Микроядро играет роль регулировщика - оно проверяет сообщения, пересылает их между серверами и клиентами и предоставляет доступ к аппаратуре.

    Использование концепции микроядра способствует переносимости операционных систем, поскольку весь машинно-зависимый код изолирован в микроядре, а значит для переноса системы на новый процессор требуется меньше изменений, и все они логически сгруппированы вместе. Операционная система Windows NT может работать на компьютерах, построенных на базе процессоров Intel, PowerPC, DEC Alpha, MIPS.

    Технология микроядер является основой построения множественных прикладных сред, которые обеспечивают совместимость программ, написанных для разных ОС. Абстрагируя интерфейсы прикладных программ от расположенных ниже операционных систем, микроядра позволяют гарантировать, что вложения в прикладные программы не пропадут в течение нескольких лет, даже если будут сменяться операционные системы и процессоры. В среде Windows NT, кроме "родных" 32-битовых приложений, могут выполняться приложения MS-DOS, 16-битовые Windows-приложения, Posix- и OS/2-приложения.

    Рис. 1.1. Структура ОС на базе микроядра
    Однако, такая гибкость не дается даром. Пересылка сообщений не так быстра, как обычные вызовы функций, и ее оптимизация является критическим фактором успеха операционной системы на основе микроядра. Поэтому разработчики Windows NT отказались от модели микроядра в ее чистом виде. Кроме собственно микроядра, в привилегированном режиме работает часть Windows NT, называемая executive - исполнительная подсистема. Она включает ряд компонентов, которые управляют виртуальной памятью, объектами, вводом-выводом и файловой системой (включая сетевые драйверы), взаимодействием процессов и, частично, системой безопасности. Часть Windows NT, работающая в пользовательском режиме состоит из серверов Windows NT, называемых также защищенными подсистемами (рисунок 1.2).

    Так как защищенные подсистемы автоматически не могут совместно использовать память, они общаются друг с другом посредством посылки сообщений. Сообщения могут передаваться как между клиентом и сервером, так и между двумя серверами. Все сообщения проходят через executive. Защищенные подсистемы Windows NT работают в пользовательском режиме и создаются Windows NT во время загрузки операционной системы. Сразу после создания они начинают бесконечный цикл своего выполнения, отвечая на сообщения, поступающие к ним от прикладных процессов и других подсистем. Для упрощения на рисунке взаимодействие приложений с защищенными подсистемами иллюстрируется стрелками, соединяющими их напрямую, однако в действительности взаимодействие приложений с защищенными подсистемами реализуется через ядро путем обмена сообщениями.

    Поддержку защищенных подсистем обеспечивает исполнительная часть Windows NT - executive, которая работает в пространстве ядра и никогда не сбрасывается на диск. Ее составными частями являются:

    • Менеджер объектов. Создает, удаляет и управляет объектами NT executive - абстрактными типами данных, используемыми для представления ресурсов системы.

    • Монитор безопасности. Устанавливает правила защиты на локальном компьютере. Охраняет ресурсы операционной системы, выполняет защиту и регистрацию исполняемых объектов.

    • Менеджер процессов. Создает и завершает, приостанавливает и возобновляет процессы и нити, а также хранит о них информацию.

    • Менеджер виртуальной памяти.

    • Средства локального вызова процедур. Передают сообщения между клиентскими и серверными процессами одного и того же компьютера.

    • Подсистема ввода-вывода. Включает в себя следующие компоненты: 1) менеджер ввода-вывода предоставляет средства ввода-вывода, независимые от устройств; 2) файловые системы, NT-драйверы, выполняющие файл-ориентированные запросы на ввод-вывод, транслирующие их в вызовы обычных устройств; 3) сетевой редиректор и сетевой сервер, драйверы файловых систем, передающие удаленные запросы на ввод-вывод на машины сети и получающие запросы от них; 4) драйверы устройств NT executive, низкоуровневые драйверы, которые непосредственно управляют устройством; 5) менеджер кэша, реализующий кэширование диска.

    Исполнительная часть в свою очередь основывается на службах нижнего уровня, предоставляемых ядром (его можно назвать и микроядром) NT. В функции ядра входит:

    • планирование нитей,

    • обработка прерываний и исключительных ситуаций,

    • синхронизация процессоров для мультипроцессорных систем,

    • восстановление системы после сбоев.

    Обратиться к ядру можно только посредством прерывания. Ядро расположено над уровнем аппаратных абстракций (Hardware Abstraction Level HAL), который концентрирует в одном месте основную часть машинно-зависимых процедур. Располагается HAL между NT executive и
    Рис. 1.2. Структура Windows NT
    аппаратным обеспечением и скрывает от системы такие детали, как контроллеры прерываний, интерфейсы ввода/вывода и механизмы взаимодействия между процессорами. Такое решение позволяет легко переносить Windows NT с одной платформы на другую путем замены только слоя HAL.

    Среди всех защищенных подсистем можно выделить так называемые подсистемы окружения - Win32, 16-битный Windows, DOS, OS/2, Posix. Каждая из этих подсистем реализует соответствующий прикладной программный интерфейс. Windows NT использует подсистемы окружения со следующими целями:

    • Обеспечить несколько программных интерфейсов (APIs), сохраняя как можно более простым базовый программный код (NT executive).

    • Экранировать базовую операционную систему от изменений или расширений в поддерживаемых API.

    • Объединить часть глобальных данных, требуемых всем API, и в то же время отделить данные, требуемые одному API от данных, требуемых другим API.

    • Защитить окружение каждого API от приложений, а также от окружений других API и защитить базовую операционную систему от различных окружений.

    • Позволить операционной системе расширяться в будущем за счет новых API.


    Планирование процессов и нитей
    В отличие от Windows, в которой реализована многозадачность без вытеснения (non-preemptive multitasking), в Windows NT используется механизм многозадачности с вытеснением (preemptive multitasking).

    Windows NT поддерживает симметричную мультипроцессорную организацию вычислительного процесса, в соответствии с которой ОС может выполняться на любом свободном процессоре или на всех процессорах одновременно, разделяя память между ними. Так как многозадачность реализуется на уровне нитей, разные части одного и того же процесса могут действительно выполняться параллельно. Следовательно, многонитевые серверы могут одновременно обслуживать более одного клиента.

    Для того, чтобы прикладная программа могла использовать несколько нитей, не нужно предусматривать этого в ее алгоритме. Отдельная нить создается для каждой операции. Например, в одной нити программа может воспроизводить сложную графическую форму, а в другой - использоваться для редактирования объемного чертежа. Каждая из этих нитей (или, с точки зрения пользователя, операций) работает на отдельном процессоре, не требуя никаких управляющих вмешательств со стороны приложения. Нити внутри процесса используют общую область памяти и, следовательно, могут очень просто обмениваться данными.

    Для управления нитями Windows NT использует механизм приоритетов. В определенные моменты производятся оценка приоритетов и перераспределение нитей по процессорам, в результате чего последовательные стадии одной нити программы могут выполняться разными процессорами или откладываться до высвобождения очередного процессора.

    Каждой нити присваивается число - приоритет, и нити с более высоким приоритетом выполняются раньше нитей с меньшим приоритетом. В самом начале нить получает приоритет от процесса, который создает ее. В свою очередь и процесс получает приоритет в тот момент, когда его создает подсистема среды. Значение базового приоритета процесса присваивается ему системой по умолчанию или системным администратором. Нить наследует этот базовый приоритет и может изменить его, немного увеличив или уменьшив. На основании получившегося в результате приоритета, называемого приоритетом планирования, начинается выполнение нити. В ходе выполнения приоритет планирования может меняться.

    Windows NT поддерживает 32 уровня приоритетов, разделенных на два класса - класс реального времени и класс переменных приоритетов (рисунок 1.3). Нити реального времени, приоритеты которых находятся в диапазоне от 16 до 31, являются более приоритетными процессами и используются для выполнения задач, критичных ко времени.

    В Windows NT определено 4 класса приоритетов процессов:

    • IDLE_PRIORITY_CLASS - уровень 4

    • NORMAL_PRIORITY_CLASS - уровень 9 при интерактивной работе процесса (forground) и уровень 7 при работе в фоновом режиме (background)

    • HIGH_PRIORITY_CLASS - уровень 13

    • REALTIME_PRIORITY_CLASS - уровень 24

    Большинство приложений либо не определяет класс приоритета процесса при его создании, либо устанавливает его в значение NORMAL_PRIORITY_CLASS. Класс IDLE - самый низкоприоритетный - хорошо использовать для работ, некритичных к скорости их выполнения, например, при наблюдении за состоянием системы или же при резервном копировании на ленту. Высокий приоритет (HIGH_PRIORITY_CLASS) следует использовать только тогда, когда это абсолютно необходимо, так как нити такого процесса будут выполняться всегда перед нитями процесса с нормальным приоритетом. В Windows NT с приоритетом HIGH работает процесс Task Manager. Обычно он находится в состоянии ожидания, но при нажатии комбинации клавиш Ctrl+Esc нить Task Manager пробуждается и немедленно вытесняет любые нити обычных приложений. Приоритеты реального времени системными процессами Windows NT (и тем более офисными приложениями) не используются. Этот класс приоритетов нужно использовать только для систем реального времени, например, сбора данных от промышленных установок, управления движущимися объектами и т.п.

    Все нити, созданные процессом определенного класса, имеют сначала приоритет процесса. Но в ходе своего выполнения нить может изменить свой приоритет относительного базового приоритета процесса с помощью системного вызова SetThreadPriority. Этот вызов имеет параметр, который может принимать 5 относительных значений, понижая приоритет относительно базового на 2 или 1 единицу, повышая его на 2 или 1 единицу или делая его равным базовому. Имеется еще 2 абсолютных значения этого параметра - IDLE и CRITICAL. Значение IDLE делает приоритет нити равным 1 независимо от его базового приоритета (для процессов REALTIME приоритет становится равным 16), а значение CRITICAL повышает приоритет до 15 для всех процессов (для процессов REALTIME приоритет повышается до 31).

    На выполнение всегда выбирается нить с самым высоким приоритетом. Каждый раз, когда необходимо выбрать нить для выполнения, диспетчер прежде всего просматривает очередь готовых нитей реального времени и обращается к другим нитям, только когда очередь нитей реального времени пуста. Обычно большинство нитей в системе попадают в класс нитей с переменными приоритетами, диапазон приоритетов которых от 0 до 15. Этот класс имеет на-звание "переменные приоритеты" потому, что диспетчер настраивает систему, выбирая (понижая или повышая) приоритеты нитей этого класса.

    Для выполнения нити отводится квант времени, по истечении которого она должна освободить процессор. Если нить полностью использовала выделенный ей квант, то она переводится в очередь готовых нитей, а ее приоритет понижается. Если же ее выполнение было прервано появлением в очереди готовых нитей с более высоким приоритетом, то она также возвращается в очередь готовых нитей, а ее приоритет остается неизменным. В случае же перехода нити по собственной инициативе в состояние ожидания некоторого события, ее приоритет повышается на некоторую величину, компенсируя этой нити недоиспользованную ею часть кванта.

    Итак, нить освобождает процессор, если:

    • нить блокируется, уходя в ожидание,

    • нить завершается,

    • нить исчерпала квант,

    • нить вытеснена более приоритетной нитью.



    Рис. 1.3. Система очередей готовых нитей
    При планировании нитей в Windows NT используются концепции квантования, абсолютных приоритетов и динамических приоритетов.

    • Квантование - нитям отводится квант времени, по истечении которого выполнение нити прекращается.

    • Абсолютные приоритеты - при появлении в очереди нити с более высоким приоритетом, чем у активной в данный момент, выполнение последней немедленно прерывается.

    • Динамические приоритеты - приоритеты нитей могут изменяться системой: понижаются у нитей, исчерпавших квант, повышаются у нитей, недоиспользовавших квант из-за перехода в состояние ожидания.

    Windows NT поддерживает симметричную мультипроцессорную обработку. Однако реализация симметричной мультипроцессорности в Windows NT нацелена на оптимизацию производительности и не обеспечивает резервирования в целях повышения отказоустойчивости. В случае выхода из строя одного из процессоров система останавливается. В Windows NT Server в полной мере реализован потенциал масштабируемости симметричной мультипроцессорной архитектуры. Однопроцессорную систему можно легко развивать, наращивая число процессоров, без замены версии ОС или приложений.
    1   ...   19   20   21   22   23   24   25   26   ...   29


    написать администратору сайта