Главная страница
Навигация по странице:

  • Механизм фотореактивации

  • 21. Транскрипция, генетический код, процессинг РНК. Биосинтез РНК – транскрипция

  • Отличия транскрипции

  • Участки рибосом для связывания РНК

  • Участок для связывания с тРНК

  • Генетический код, его характеристика.

  • 22. Трансляция

  • Лактозный оперон E . Coli

  • Позитивная регуляция – ТАТА фактор

  • 24. Дезаминирование, трансаминирование, декарбоксилирование. В тканях происходит только окислительное дезаминирование

  • Прямое окислительное дезаминирование

  • Декарбоксилирование аминокислот

  • 25. Связь трансаминирования и дезаминирования. Непрямое дезаминирование. Непрямое окислительное дезаминирование в тканях

  • 26. Образование и обезвреживание аммиака в организме. Биосинтез мочевины.

  • Орнитиновый цикл мочевинообразования

  • На первом этапе

  • 27. Процессы образования конечных продуктов обмена простых белков.

  • Шпоры химия. 1. Метаболизм, способы образования атф в организме. Метаболизм


    Скачать 0.62 Mb.
    Название1. Метаболизм, способы образования атф в организме. Метаболизм
    АнкорШпоры химия.rtf
    Дата20.04.2018
    Размер0.62 Mb.
    Формат файлаrtf
    Имя файлаШпоры химия.rtf
    ТипДокументы
    #18273
    страница3 из 7
    1   2   3   4   5   6   7

    Типы повреждения ДНК:1) повреждение затрагивающее отдельные нуклеотиды: А) апуринизация – потеря азотистого основания, т.е. остается остов с дезоксирибозой без азотистого основания. Исправляет это ДНК-инсертаза, она включает азотистые основания по принципу комплиментарности. Б) спонтанное дезаминирование: аденин – NH3 в присутствии воды гипосантин. Цитозин урацил. Гуанин сантин. В) делеция (вставка) нуклеотидов. Г) включение основания аналога. Д) алкинирование азотистого основания. 2) Повреждение затрагивает пары нуклеотидов, что приводит к образованию пиримидиновых димеров (сшивок). 3)Разрывы цепей под действием ионизирующей радиации.

    Механизм фотореактивации под влиянием видимого света происходит активация фермента фотолиазы, которая действует на тиминовые димеры, связь между ними разрушается и образуется тимин. Эксцизионная репарация – осуществляется комплексом ферментов. В одну из двух нитей встроено не то азотистое основание, его обнаруживает фермент N-гликозилаза. Эндонуклеаза делает разрез, а экзонуклеаза вырезает десятки нуклеотидов. ДНК-полимераза I ресинтезирует участок разрушенной ДНК в направлении 5’-3’, подбирая правильные нуклеотиды по правилу комплиментарности. ДНК-лигаза сшивает оставшийся разрыв.

    Процессы репарации: 1) пигментная ксеродерма – нарушена световая репарация, поэтому у людей повышена чувствительность к ультрафиолету, что приводит к раку кожи и к летальному исходу. 2) анемия Данкони (Фанкони) – наблюдается снижение образования всех форменных элементов крови неустойчивые лейкоциты, гемолиз эритроцитов, трансформация скелета. Нарушена репарация повреждений от химических мутогенов. 3) Атаксия или ангиэктазия – повышенная чувствительность к гаммаизлучению, нет фермента гаммаэндонуклеазы, развиваются кожные пятна и мозжечковые расстройства. 4) прогерия – ребенок рождается как старичок, его кожа быстро стареет и сморщивается. Все случаи сопровождаются развитием опухолей.
    21. Транскрипция, генетический код, процессинг РНК.

    Биосинтез РНК – транскрипция – процесс считывания генетической информации с ДНК, при котором нуклеотидная последовательность ДНК кодируется в виде нуклеотидной последовательности РНК. Используется в качестве энергии и субстрата – нуклеозид-3-фосфат с рибозой. В основе лежит принцип комплиментарности – консервативный процесс – синтезируется новая одноцепочная РНК во время всей интерфазы, начинается в определенных участках – промоторах, заканчивается в терминаторах, а участок между ними – оперон (транскриптон) – содержит один или несколько функционально связанных генов, иногда содержит гены которые не кодируют белки. Отличия транскрипции: 1) транскрибируются отдельные гены. 2) не требуется праймера. 3) в РНК включается рибоза, а не дезоксирибоза.

    Этапы транскрипции: 1) связывание РНК-полимеразы с ДНК. 2) инициация – образование цепи РНК. 3) элонгация или рост цепи РНК. 4) терминация.

    1 этап – участок с которым связывается РНК-полимераза называется промотор (40 нуклеотидных пар) – имеет сайт узнавания, прикрепления, инициации. РНК-полимераза узнав промотора садится на него и образуется закрытый промоторный комплекс, в котором ДНК спирализовано и комплекс может легко диссоциировать и переходить в открытый промоторный комплекс – связи прочные, азотистое основание выворачивается наружу.

    2 этап – инициация синтеза РНК заключается в образовании нескольких звеньев в цепи РНК, синтез начинается на одной цепи ДНК 3’-5’ и идет в направлении 5’-3’. Стадия заканчивается отделением б-субъединицы.

    3 этап – элонгация – удлинение цепочки РНК – происходит за счет Core-рРНК-полимеразы. Нить ДНК деспирализована на 18ти парах, а на 12 – гибрид – общий гибрид ДНК и РНК. РНК-полимераза продвигается по цепочке ДНК, а после восстановление цепочки ДНК. У эукариот когда РНК достигает 30 нуклеотидов на 5’-конце образуется защитная структура КЭП.

    4 стадия – терминация – происходит на терминаторах. В цепочке находится участок богатый ГЦ, а затем от 4 до 8 расположенных подряд А. После прохождения участка в РНК продукте образуется шпилька и фермент дальше не идет, синтез прекращается. Важную роль играет белковый фактор терминации – ро и тауэр. Пока шел синтез пирофосфат ингибировал ро белок, т.к. фермент остановился (шпилька) прекратился синтез фосфорной кислоты. Ро белок активируется и проявляет нуклеозидфосфатазную активность, что приводит к высвобождению РНК, РНК-полимеразы, которая в дальнейшем объединяется с субчастицей.

    Процессинг – созревание РНК. Включает в себя: 1) образование КЭП на 5’-конце, участвует в присоединение к рибосоме. 2) на 3’-конце происходит полиаденилирование и образуется хвост из ста-двухсот адениловых нуклеотидов, он защищает ‘-конец от действия нуклеаз и помогает проходить через ядерные поры и играет роль в присоединение к рибосоме. 3) сплайсинг – вырезается не кодирующие последовательности – интроны. Это происходит двумя путями: а) осуществляется сплайсосомой – это нуклеопротеид, содержащий ряд белков и малую ядерную РНК. В начале происходит выпетливание интронов, при этом остаются только кодирующие последовательности – экзоны. Ферменты эндонуклеазы разрезают, а лигазы сшивают оставшиеся экзоны. Т.О. интроны уходят. Альтернативный сплайсинг – на одной последовательности нуклеиновой кислоты РНК образуют несколько белков. Самосплайсинг – самостоятельное удаление интронов. Нарушение сплайсинга: 1) системная красная волчанка. 2) фенилкетонурия. 3) гемоглобинопатия. Матричная РНК прокариот не подвергается процессингу, т.к. у них не интронов. Процессинг тРНК. Предшественник тРНК расщепляется и отщепляется нуклеотид 5’-3’ Q P. К 3’-концу присоединяется последовательность ССА с ОН-группой, на 5’ конце фосфорилированое пуриновое основание. Дугидроуридиновая петля – АРСаза. Процессинг рРНК. Предшественник рРНК – прорибосомальная РНК 45S синтезируется в ядрышке и подвергается действию рибонуклеаз и образуется 5,8S 18S 28S. Они на 70% спирализуются. рРНК играет роль в формировании рибосомы и участвует в каталитических процессах. Субъединица формируется из рРНК в ядре. Малая субъединица 30S, большая субъединица 50S и образуется рибосома 70S у прокариот, у эукариот 40S + 60S = 80S. Формирование рибосом происходит в цитоплазме.

    Участки рибосом для связывания РНК: 1) в малых субъединицах, у которых есть последовательность Шайна-Далгорна мРНК 5’ГГАГГ3’ 3’ЦЦУЦЦ5’. Матричная РНК крепится к малой субъединице. У эукариот КЭП-связывающий участок для мРНК. Участок для связывания с тРНК: а) Р-участок – пептидильный центр для связывания мРНК с растущей пептидной цепью – пептидил-тРНК-связывающий. б) А-участок – для связи тРНК с аминокислотой – аминоацильный участок 2) В большой субъединице Е-участок с пептидилтрансферазной активность.

    Обратная транскрипция характерна для ретровирусов или вирусы содержащие РНК – вирус ВИЧ-инфекции, онковирусы.

    На цепочке РНК происходит синтез ДНК под действием фермента обратной транскриптазы или ревертазы, или ДНКРНК-полимераза. Внедряясь в клетку хозяина происходит синтез ДНК, в которая встраивается в ДНК хозяина и начинается транскрипция своих РНК и синтез собственных белков.

    Генетический код, его характеристика. Генетический код – это нуклеотидная последовательность молекулы рРНК в которой имеются кодовые слова для каждой аминокислоты. Он заключается в определенной последовательности расположения нуклеотидов в молекуле ДНК.

    Характеристика. 1) генетический код триплетный – т.е. каждая а/к-та зашифрована тремя нуклеотидами. 2) генетический код для а/к является вырожденным или избыточным – подавляющее большинство а/к кодируется несколькими кодонами. Всего 64 триплета образуется, из них 61 триплет кодирует определенную а/к, а три триплета – АУГ, УАА, УГА являются нонсенс-кодонами, т.к. они не кодируют ни одной из 20 а/к, выполняют функцию терминации синтеза. 3) Генетический код является непрерывным, отсутствуют знаки препинания, т.е. сигналы, указывающие на конец одного триплета и начала другого. Код является линейным, однонаправленным, непрерывным. Например - АЦГУЦГАЦЦ. 4) кодоном включения синтеза служит триплет АУГ. 5) Генетический код является универсальным.
    22. Трансляция – биосинтез белка. Этапы трансляции: 1) инициация. 2) элонгация. 3) терминация. Инициация – происходит активация а/к.

    Инициирующая аатРНК будет взаимодействовать с 1 а/к будущего белка только карбоксильной группой, а 1 а/к может давать на синтез только NH2 группу, т.о. синтез белка начинается с N-конца.

    Сборка инициирующего комплекса на малой субчастице. Факторы: 30S мРНК фомилметионил тРНК IF 123 Mg2+ ГТФ – источник энергии

    Нагруженная факторами инициации малая субъединица находит на мРНК старт кодон АУГ или ГУГ и по нему устанавливается рамка считывания, т.е. старт кодон помещается в Р-участок. К нему подходит формлметионил тРНК, что сопровождается высвобождением фактора IF 3, затем присоединяется большая субъединица и высвобождается IF 1 и IF2, происходит гидролиз 1ГТФ и образуется рибосома. Элонгация – рабочий цикл рибосомы. Включает в себя три шага: 1) связывание аатРНК с А-участком т.к. занят Р-участок– нужны факторы элонгации EF-TU, EF-TS и ГТФ.. 2) транспептидирование Е-участок перебрасывает а/к и образуется пептидная связь. Факторы элонгации у прокариот: EF-TU, EF-TS, EF-G. 3)Транслокация – сначала EF-G деацилированная тРНК Р-участка покидает рибосому, происходит перемещение на 1 триплет в сторону 3’ конца; перемещение пептида из А, в Р-участок – используется ГТФ и фактор элонгации – EF-G-транслоказа, А – участок опять свободен и процесс повторяется. Терминация – узнавание терминирующих кодонов УАА, УГА, УАГ с помощью релизинг-факторов RF 1 2 3. При попадании терминального кодона в А-участок к нему не присоединяется тРНК, а присоединяется один из факторов терминации, который блокирует элонгацию, что сопровождается активацией эстеразной активности пептидилтрансферазы участка Е. Происходит гидролиз сложных эфирных связей между пептидом и тРНК, рибосома покидает пептид, тРНК и диссоциирует на субъединицы, которые потом могут быть использованы.

    Формирование структуры происходит одновременно с помощью белков-шаперонов – белки теплового шока. На синтез одной пептидной связи расходуется 1АТФ на аминоацилирование тРНК (присоединение аминокислоты), 1ГТФ на связь аатРНК с А-участком и 1ГТФ на транслокацию. Затрата энергии около 4 макроэргических связей на синтез одной пептидной связи.
    23. Лактозный оперон. Регуляция репликации осуществляется с помощью концентрации белка Dna и гуанозинтетрафосфата. Основная регуляция экспрессии генов осуществляется на уровне транскрипции (зависит от стадии развития клетки, всех факторов, действия гормонов и других регуляторных компонентов). В разных клетках тканей только 5% генов экспрессируется, 97% молчат – мусорные ДНК – регуляторы транскрипции это хрономеры и ряд регуляторных последовательностей. Если присоединение белка-регулятора к ДНК вызывает транскрипцию, то это позитивная (+) регуляция, если подавление транскрипции – негативная (-) регуляция. Позитивная регуляция – ген выключен, присоединение белка-регулятора приводит к началу синтеза, в итоге ген включается. Т.О. белок-регулятор может быть индуктором или активатором. Негативная регуляция – ген включен, идет синтез РНК, если присоединяется белковый фактор регуляции (ингибитор или репрессор синтеза белка)Д ген выключается. Многие гормоны и другие факторы влияют на присоединение белка регулятора. Лактозный оперон E. Coli – негативная регуляция. Основные элементы его работы: в молекуле ДНК – участок регулятор, промотор, про-оперон и три структурных гена: лаг 1, лаг 2, лаг 3 и терминатор. Лаг 1 – осуществляет синтез фермента лактазы или бета-галактозидазы. Лаг 2 – фермент пермиаза, участвует в транспорте лактозы через мембрану. Лаг 3 – фермент трансацилаза. Регулятор – синтез мРНК на рибосоме, ведет к образованию белка репрессора, он присоединяется к оператору (т.к. имеет сродство), садится на него, а т.к. участки промотора и оперона перекрываются – РНК-полимераза не может присоединиться к промотору и транскрипция выключается. Глюкоза и галактоза обеспечиваю сходство репрессора и оператора. Если сходства не будет, лактоза взаимодействует с репрессором, меняя его трансформацию, и он не садится на оперон, т.к. теряет сходство к нему. РНК-полимераза садится на промотор и начинается транскрипция матричной РНК. Лактоза – это индуктор, а процесс – индукция – форма негативной регуляции, называемая так потому, что транскрипция прекращается из-за присоединения репрессора и его отщепление приводит к началу синтеза. Позитивная регуляция – ТАТА фактор – имеет сходство к участку ТАТА-бокс. ТАТА фактор садится на ТАТА-бокс – сигнал для РНК-полимеразы для узнавания своего промотора, села на него и начала транскрипцию рядом расположенных генов. У прокариот преоблалает негативная регуляция, для эукариот это не выгодно. Участки-энхансеры (усилители транскрипции) + белок-регулятор приводит к усилению транскрипции. Саинсеры + белок-регулятор выключает транскрипцию и изменяет структуру хромосом.

    24. Дезаминирование, трансаминирование, декарбоксилирование.

    В тканях происходит только окислительное дезаминирование а/к, при этом происходит отщепление аминогруппы и выделяется аммиак.

    Прямое окислительное дезаминирование – под действием глутаматдегидрогеназы (кофермент НАД) глутаминовая кислота превращается в альфакетоглутарат и выделяется аммиак.

    Реакция включает анаэробную фазу дегидрирования глутаминовой кислоты с образованием промежуточного продукта – иминоглутаровой кислоты – и спонтанный гидролиз последней на аммиак и альфа-кетоглутаровую кислоту.

    Оксидаза L а/к имеет оптимум активности при рН = 10, а в тканях около 7, поэтому она не активна. Оксидаза D а/к имеет оптимум активности при рН = 7, но ее субстратом являются D а/к, кот в тканях очень мало.

    Трансаминирование а/к – обратимая реакция межмолекулярного переноса аминогруппы от а/к на альфа-кетокислоту без промежуточного образования аммиака, протекает при участии специфических ферментов трансаминаз. На первой стадии у аминокислоты отщепляется NH2 группа, которая передается на перидоксальфосфат, в результате чего образуется перидоксаминфосфат. На второй стадии перидоксаминфосфат реагирует с любой другой альфа-кетокислотой, что приводит к синтезу новой а/к-ты и освобождению перидоксальфосфата. Большое значение имеют две трансаминазы: аланин-аминотрансфераза (АлАТ) и аспартат-аминотрансфераза (АсАТ).

    Декарбоксилирование аминокислот - процесс отщепления карбоксильной группы аминокислот в виде СО2, эта реакция необратима, реакцию катализируют декарбоксилазы, у которых простерическая группа представлена пиридоксальфосфатом. В тканях происходит декарбоксилирование тирозина, триптофана, валина, серина, гистидина, цистеина, аргенина, орнитина, альфа-аминомалоновой кислоты, 5-окситриптофана, глутаминовой кислоты и др.

    Известно четыре типа декарбоксилирования аминокислот: 1) альфа-декарбоксилирование – от аминокислот отщепляется карбоксильная группа, стоящая по соседству с альфа-углеродным атомом. Продуктами реакции являются СО2 и биогенные амины 2) w-декарбоксилирование, свойственное микроорганизмам, из аспарагиновой кислоты образуется альфа-аланин 3)декарбоксилирование, связанное с реакцией трансаминирования - образуется альдегид и новая аминокислота, соответствующая исходной аминокислоте 4)декарбоксилирование, связанное с реакцией конденсации двух молекул. Эта реакция в тканях животных осуществляется при синтезе сигма-аминолевулиновой кислоты из глицина и сукцинил-КоА, и при синтезе сфигнолипидов, а также у растений при синтезе биотина.

    В тканях с высокой скоростью протекает декарбоксилирование гистидина под действием специфической декарбоксилазы и образуется гистамин.

    Гистамин обладает сосудорасширяющим действием на кровеносные сосуды. При декарбоксилировании 5-окситриптофана под действием ароматических а/к-т образуется серотонин и СО2. Из тирозина образуется 3,4-диоксифенилаланин (ДОФА). При декарбоксилировании ДОФА под действием декарбоксилазы ароматических а/к образуется дофамин и СО2.
    25. Связь трансаминирования и дезаминирования. Непрямое дезаминирование.

    Непрямое окислительное дезаминирование в тканях.

    Включает в себя 2 реакции в ходе которых участвуют 2 различных фермента. Любая а/к подвергается трансаминированию, она реагирует с альфакетоглутаровой кислотой под действием трансаминазы В6(пиридоксальфосфат который в процессе реакции обратимо превращается в перидоксаминфосфат) и образуется глутаминовая кислота и соот. кетокислота. Глутамат под действием глутаматдегидрогеназы превращается в альфакетоглутарат и выделяется аммиак.

    26. Образование и обезвреживание аммиака в организме. Биосинтез мочевины. Аммиак образуется при распаде пуриновых и пиримидиновых азотистых оснований, окислительном дезаминировании аминокислот в тканях, дезаминирование биогенных аминов.

    Орнитиновый цикл мочевинообразования – основной механизм обезвреживания аммиака в организме. Мочевина является главным конечным продуктом белкового обмена, она синтезируется в печени.

    На первом этапе синтезируется макроэргическое соединение – карбамоилфосфат. На втором этапе происходит конденсация карбамоилфосфата и орнитина с образованием цитрулина. Далее цитрулин взаимодействует с аспартатом и образуется аргининосукцинат, который под действием аргининосукцинат-лиазы распадается на фумарат и аргинин, который под действием аргиназы расщепляется на мочевину и орнитин.
    27. Процессы образования конечных продуктов обмена простых белков.

    Аминокислота R-CH-NH2-COOH окисляется до NH3 (обезвреживается и превращается в мочевину, которая выводится с мочой) и R-C=O-COOH CO2 + R- COOH бета окисление до АцКоА ЦТК АТФ + Н2О + СО2
    1   2   3   4   5   6   7


    написать администратору сайта