Главная страница
Навигация по странице:

  • Качественные эксперименты

  • Количественные эксперименты

  • Прикладные эксперименты

  • Общенаучные методы теоретического познания

  • Абстрагирование. Восхождение от абстрактного к конкретному

  • Логически-конкретное есть теоретически воспроизведенное в мышлении исследователя конкретное во всем богатстве его содержания.

  • Идеализация. Мысленный эксперимент Идеализация

  • Формализация. Язык науки Под формализацией

  • Для построения любой формальной системы необходимо

  • Общенаучные методы, применяемые на эмпирическом и на теоретическом уровнях научного познания

  • Но аналогия

  • 1. Физическое моделирование

  • 2. Идеальное (мысленное) моделирование

  • 3. Символическое (знаковое) моделирование

  • 4. Математическое моделирование

  • 5. Вещественно-математическое (или предметно-математическое) моделирование.

  • 6. Численное моделирование на электронных вычислительных машинах (ЭВМ)

  • Лаораторная 1. 1. моделирование как метод исследования содержание, цели и задачи учебной дисциплины Предметная область дисциплины


    Скачать 0.9 Mb.
    Название1. моделирование как метод исследования содержание, цели и задачи учебной дисциплины Предметная область дисциплины
    АнкорЛаораторная 1
    Дата20.11.2022
    Размер0.9 Mb.
    Формат файлаdoc
    Имя файлаТема 1. Моделирование как метод РёСЃСЃР.doc
    ТипДокументы
    #801915
    страница2 из 7
    1   2   3   4   5   6   7

    Исследовательский эксперимент даёт возможность обнаружить у объектов новые, ранее неизвестные свойства. Результатом такого эксперимента могут быть выводы, не вытекающие из имеющихся знаний об объекте исследования. Примером могут служить эксперименты, поставленные в лаборатории Э. Резерфорда, в ходе которых обнаружилось странное поведение альфа-частиц при бомбардировке ими золотой фольги. Большинство частиц проходило сквозь фольгу, небольшое количество отклонялось и рассеивалось, а некоторые частицы не просто отклонялись, а отталкивались обратно, как мяч от сетки. Такая экспериментальная картина, согласно расчетам, получалась в том случае, если масса атома сосредотачивается в ядре, занимающем ничтожную часть его объема. Отскакивали обратно альфа-частицы, которые соударялись с ядром. Так исследовательский эксперимент, проведенный Резерфордом и его сотрудниками, привел к обнаружению ядра атома, а тем самым и к рождению ядерной физики.

    Проверочный. Этот эксперимент служит для проверки, подтверждения тех или иных теоретических построений. Так, существование целого ряда элементарных частиц (позитрона, нейтрино) было вначале предсказано теоретически, а позднее они были обнаружены экспериментальным путём.

    Качественные эксперименты являются поисковыми. Они не предполагают получения количественных соотношений, а позволяют выявить действие тех или иных факторов на изучаемое явление. Например, эксперимент по изучению поведения живой клетки под действием электромагнитного поля. Количественные эксперименты чаще всего следуют за качественным экспериментом. Они направлены на установление точных количественных зависимостей в исследуемом явлении. В качестве примера можно привести историю открытия связи электрических и магнитных явлений. Эту связь обнаружил датский физик Эрстед в процессе проведения чисто качественного эксперимента. Он поместил компас рядом с проводником, по которому пропускал электрический ток, и обнаружил, что стрелка компаса отклонялась от первоначального положения. Вслед за обнародованием Эрстедом своего открытия последовали количественные эксперименты ряда ученых, разработки которых закрепились в названии единицы силы тока.

    Близки по своей сути к научным фундаментальным экспериментам прикладные. Прикладные эксперименты ставят своей задачей поиск возможностей практического применения того или иного открытого явления. Г. Герц ставил задачу экспериментальной проверки теоретических положений Максвелла, практическое применение его не интересовало. Поэтому эксперименты Герца, в ходе которых были получены электромагнитные волны, предсказанные теорией Максвелла, оставались естественнонаучными, носящими фундаментальный характер.
    Общенаучные методы теоретического познания

    Теоретический уровень научного познания отражает явления и процессы со стороны их универсальных внутренних связей и закономерностей, достигая этого путем рациональной обработки данных эмпирического уровня знания. Поэтому в нем задействованы все формы мышления – понятия, суждения, умозаключения, общелогические методы, а также методы, связанные с мыслительными операциями – абстрагирование, идеализация, формализация и пр. Остановимся подробнее на отдельных методах.
    Абстрагирование. Восхождение от абстрактного к конкретному

    Процесс познания, как правило, начинается с рассмотрения конкретных чувственных предметов и явлений, их внешних признаков, свойств, связей. Только в результате изучения чувственно-конкретного человек приходит к обобщенным представлениям, понятиям, т.е. абстракциям.

    Абстрагирование - это мысленное отвлечение от каких-то менее существенных свойств, сторон, признаков изучаемого объекта с одновременным выделением, формированием одной или нескольких существенных сторон, свойств, признаков этого объекта. Результат, получаемый в процессе абстрагирования, именуют абстракцией (абстрактное).

    Существуют два вида абстрагирования: отождествления и изоляции.

    Абстракция отождествления представляет собой понятие, которое получается в результате отождествления некоторого множества предметов и объединения их в особую группу. Например, такие понятия как вид, род, отряды и т. п., используемые в биологии.

    Изолирующая абстракция представляет собой выделение некоторых свойств, отношений, неразрывно связанных с предметами материального мира, в самостоятельные сущности («устойчивость», «растворимость», «электропроводность» и т.п.).

    Одним из показательных примеров роли абстракции является создание Максвеллом теории электромагнитного поля. Максвелл создал свою теорию, идя от чувственно-наглядных опытов, эмпирических представлений Фарадея, которая, в свою очередь, открывала новые перспективы.

    Поскольку конкретное (т.е. реальные объекты, процессы материального мира) есть совокупность множества свойств, сторон, внутренних и внешних связей и отношений, его невозможно познать во всем многообразии, оставаясь на этапе чувственного познания, ограничиваясь им. Поэтому и возникает потребность в теоретическом осмыслении конкретного, т.е. восхождении от чувственно-конкретного к абстрактному.

    Формирование научных абстракций, общих теоретических положений не является конечной целью познания, а представляет собой только средство более глубокого, разностороннего познания конкретного. Поэтому необходимо дальнейшее движение (восхождение) познания от достигнутого абстрактного вновь к конкретному. Получаемое на этом этапе исследования знание о конкретном будет качественно иным по сравнению с тем, которое имелось на этапе чувственного познания. Логически-конкретное есть теоретически воспроизведенное в мышлении исследователя конкретное во всем богатстве его содержания. Оно содержит в себе уже не только чувственно воспринимаемое, но и нечто скрытое, недоступное чувственному восприятию, нечто существенное, закономерное, постигнутое лишь с помощью теоретического мышления, с помощью определенных абстракций.

    Восхождение от абстрактного к конкретному характеризует общую направленность научно-теоретического познания, имеющего целью переход от менее содержательного к более содержательному знанию. Другими словами, исследователь получает в результате целостную картину изучаемого объекта во всем богатстве его содержания.

    Идеализация. Мысленный эксперимент

    Идеализация - это особый вид абстрагирования, представляющий собой мысленное внесение определенных изменений в изучаемый объект в соответствии с целями исследований. В результате таких изменений могут быть, например, исключены из рассмотрения какие-то свойства, стороны, признаки объектов. Примером такого вида идеализации может служить широко распространенная в механике идеализация – материальная точка, причем под ней могут подразумевать любое тело, от атома до планеты.

    Спектр излучения абсолютно черного тела является идеальным случаем, ибо на него не оказывает влияние ни природа вещества излучателя, ни состояние его поверхности. Проблемой расчета количества излучения, испускаемого идеальным излучателем – абсолютно черным телом, занялся Макс Планк, который работал над ней 4 года. В 1900 г. ему удалось найти решение в виде формулы, которая правильно описывала спектральное распределение энергии излучаемого абсолютно черного тела. Так работа с идеализированным объектом помогла заложить основы квантовой теории, ознаменовавшей радикальный переворот в науке.

    Целесообразность использования идеализации определяется следующими обстоятельствами:

    во-первых, идеализация целесообразна тогда, когда подлежащие исследованию реальные объекты достаточно сложны для имеющихся средств теоретического, в частности, математического анализа, а по отношению к идеализированному случаю можно, приложив эти средства, построить и развить теорию, в определенных условиях и целях эффективную для описания свойств и поведения этих реальных объектов;

    во-вторых, идеализацию целесообразно использовать в тех случаях, когда необходимо исключить некоторые свойства, связи исследуемого объекта, без которых он существовать не может, но которые затемняют существо протекающих в нем процессов. Сложный объект представляется как бы в «очищенном» виде, что облегчает его изучение. Пример - идеальная паровая машина Сади Карно;

    в-третьих, применение идеализации целесообразно тогда, когда исключаемые из рассмотрения свойства, стороны, связи изучаемого объекта не влияют в рамках данного исследования на его сущность. Так, если в ряде случаев возможно и целесообразно рассматривать атомы в виде материальной точки, то такая идеализация недопустима при изучении структуры атома.

    Идеализация в отличие от чистого абстрагирования допускает элемент чувственной наглядности. Обычный процесс абстрагирования ведет к образованию мысленных абстракций, не обладающих никакой наглядностью. Эта особенность идеализации очень важна для реализации такого специфического метода теоретического познания, каковым является мысленный эксперимент.

    Мысленный эксперимент - это мысленный подбор тех или иных положений, ситуаций, позволяющих обнаружить какие-то важные особенности исследуемого объекта. Мысленный эксперимент предполагает оперирование идеализированным объектом, которое заключается в мысленном подборе тех или иных положений, ситуаций, позволяющих обнаружить какие-то важные особенности исследуемого объекта. В этом проявляется определенное сходство мысленного эксперимента с реальным. Более того, всякий реальный эксперимент, прежде чем быть осуществлен на практике, сначала «проигрывается» исследователем мысленно в процессе обдумывания, планирования.

    Вместе с тем, мысленный эксперимент играет и самостоятельную роль в науке. При этом, сохраняя сходство с реальным экспериментом, он в то же время существенно отличается от него. Это отличие заключается в следующем:

    1. . Реальный эксперимент – это метод, связанный с практическим, «орудийным» познанием окружающего мира. В мысленном же эксперименте исследователь оперирует не материальными объектами, а их идеализированными образами и само оперирование производится в его сознании, т.е. чисто умозрительно, без всякого материально-технического обеспечения.

    2. . В реальном эксперименте приходится считаться с реальными физическими и иными ограничениями поведения объекта исследования. В этом плане мысленный эксперимент имеет явное преимущество перед экспериментом реальным. В мысленном эксперименте можно абстрагироваться от действия нежелательных факторов, проведя его в идеализированном, «чистом» виде.

    3. . В научном познании могут быть случаи, когда при исследовании некоторых явлений, ситуаций проведение реальных экспериментов оказывается вообще невозможным. Этот пробел в познании может восполнить только мысленный эксперимент.

    Сама по себе идеализация, хотя и может быть плодотворной и даже подводить к научному открытию, еще не достаточна для того, чтобы сделать это открытие. Здесь определяющую роль играют теоретические установки, из которых исходит исследователь. Так, идеализация паровой машины, удачно осуществленная Сади Карно, подвела его к открытию механического эквивалента теплоты, которого он не смог открыть, так как верил в существование теплорода.

    Основное положительное значение идеализации как метода научного познания заключается в том, что получаемые на её основе теоретические построения позволяют затем эффективно исследовать реальные объекты и явления. Упрощения, достигаемые с помощью идеализации, облегчают создание теории, вскрывающей законы исследуемой области явлений материального мира. Если теория в целом правильно описывает реальные явления, то правомерны и положенные в ее основу идеализации.

    Формализация. Язык науки

    Под формализацией понимается особый подход в научном познании, который заключается в использовании специальной символики, позволяющей отвлечься от изучения реальных объектов, от содержания описывающих их теоретических положений и оперировать вместо этого некоторым множеством символов (знаков). Примером формализации может служить математическое описание.

    Для построения любой формальной системы необходимо:

    1) задание алфавита, т.е. определенного набора знаков;

    2) задание правил, по которым из исходных знаков этого алфавита могут быть получены «слова», «формулы»;

    3) задание правил, по которым от одних слов, формул данной системы можно переходить к другим словам и формулам (так называемые правила вывода).

    Достоинство формализации состоит в обеспечении краткости и четкости записи научной информации, что открывает большие возможности для оперирования ею. Вряд ли удалось успешно пользоваться, например, теоретическими выводами Максвелла, если бы они не были компактно выражены в виде математических уравнений, а описаны с помощью обычного естественного языка.

    Разумеется, формализованный язык не столь богат и гибок как естественный, но зато он не многозначен (полисемия), а обладает однозначной семантикой. Таким образом, формализованный язык обладает свойством моносемичности. Расширяющееся использование формализации как метода теоретического познания связано не только с развитием математики. В химии тоже есть своя символика вместе с правилами оперирования ею. Она представляет собой один из вариантов формализованного искусственного языка.

    Язык современной науки существенно отличается от естественного человеческого языка. Он содержит много специальных терминов, выражений, в нем широко используются средства формализации, среди которых центральное место принадлежит математической формализации. Исходя из потребностей науки, создаются различные искусственные языки, предназначенные для решения тех или иных задач. Все множество созданных и создаваемых искусственных формализованных языков входит в язык науки, образуя мощное средство научного познания.
    Общенаучные методы, применяемые на эмпирическом и на теоретическом уровнях научного познания

    Существует ряд методов, которые с успехом применимы на любом уровне научного познания. Это методы аналогии и моделирования.

    Аналогия

    Под аналогиейпонимают метод, основанный на подобии, сходстве каких-то свойств, признаков или отношений у различных в целом объектов. Установление сходства (или различия) между объектами осуществляется в результате их сравнения. Таким образом, сравнение лежит в основе метода аналогии.

    Если делается логический вывод о наличии какого-либо свойства, признака, отношения у изучаемого объекта на основании установления его сходства с другими объектами, то этот вывод называют умозаключение по аналогии.

    Степень вероятности получения правильного умозаключения по аналогии будет тем выше, чем 1) больше известно общих свойств у сравниваемых объектов; 2) существеннее обнаруженные у них общие свойства и 3) глубже познана взаимная закономерная связь этих сходных свойств.

    Надо, однако, иметь в виду, что если объект, в отношении которого делается умозаключение по аналогии с другим объектом, обладает каким-нибудь свойством, не совместимым с тем свойством, о существовании которого должен быть сделан вывод, то общее сходство этих объектов утрачивает всякое значение.

    Но аналогия - не доказательство.

    Вывод по аналогии в самом общем смысле можно определить как перенос информации с одного объекта на другой. При этом первый объект, который собственно подвергается исследованию, именуется моделью, а другой объект, на который переносится информация, полученная в результате исследования первого объекта (модели), называется оригиналом (иногда – прототипом, образцом). Между моделью и оригиналом существует сходство и подобие. Аналогия и подобие лежат в основе метода, который называется моделированием.

    Моделирование- метод исследования объектов познания на их моделях. Он предполагает построение и изучение моделей реально существующих предметов и явлений. В зависимости от характера используемых в научном исследовании моделей различаются несколько видов моделирования.

    1. Физическое моделирование

    Оно характеризуется физическим подобием между моделью и оригиналом и имеет целью воспроизведение в модели процессов, свойственных оригиналу. По результатам исследования тех или иных физических свойств модели судят о явлениях, происходящих в естественных («натуральных») условиях.

    В настоящее время физическое моделирование широко используется для разработки и экспериментального исследования различных сооружений (плотин электростанций, оросительных систем и т.п.), машин и т.п. до их реального построения. Например, аэродинамические качества самолетов исследуются на моделях.

    2. Идеальное (мысленное) моделирование

    К этому виду моделирования относятся самые различные мысленные представления в форме тех или иных воображаемых моделей. Например, модель атома Резерфорда напоминала Солнечную систему: вокруг ядра («Солнца») вращаются электроны («планеты»). Эту же модель можно реализовать материально в виде чувственно воспринимаемых физических моделей.

    3. Символическое (знаковое) моделирование

    Оно связано с условно-знаковыми представлениями каких-то свойств, отношений объекта-оригинала. К символическим (знаковым) моделям относятся разнообразные топологические и графические представления (графики, схемы, номограммы и т.п.) исследуемых объектов. Например, химическая символика, отражающая соотношение элементов во время химических реакций.

    4. Математическое моделирование - разновидность символического. Символический язык математики позволяет выражать свойства, стороны, отношения объектов и явлений самой различной природы. Взаимосвязи между различными величинами, описывающими функционирование такого объекта или явления, могут быть представлены соответствующими уравнениями. Получившаяся система уравнений вместе с известными данными, необходимыми для ее решения, называется математической моделью явления.

    5. Вещественно-математическое (или предметно-математическое) моделирование. Математическое моделирование может применяться в особом сочетании с физическим моделированием. Это позволяет исследовать какие-то процессы в объекте-оригинале, заменяя их изучением процессов совсем иной природы, протекающих в модели, которые, однако, описываются теми же математическими соотношениями, что и исходные процессы. Так, механические колебания могут моделироваться электрическими колебаниями на основе полной идентичности описывающих их дифференциальных уравнений.

    В настоящее время вещественно-математическое моделирование нередко реализуется с помощью электронных аналоговых устройств, которые позволяют создавать математическую аналогию между процессами, протекающими в объекте-оригинале и в специально организованной электронной схеме. Последняя и обеспечивает получение новой информации о процессах в исследуемом объекте.

    6. Численное моделирование на электронных вычислительных машинах (ЭВМ)

    Эта разновидность моделирования основывается на ранее созданной математической модели изучаемого объекта или явления и применяется в случаях больших объемов вычислений, необходимых для исследования данной модели. При этом для решения содержащихся в ней систем уравнений с помощью ЭВМ необходимо предварительное составление программы – совокупности предписаний для вычислительной машины. Эта программа выполняется затем ЭВМ в виде последовательности математических и логических операций. В данном случае ЭВМ вместе с введенной в нее программой представляет собой материальную систему, реализующую численное моделирование исследуемого объекта или явления.

    Численное моделирование особенно важно там, где не совсем ясна физическая картина изучаемого явления, не познан внутренний механизм взаимодействия. Путем расчетов на ЭВМ различных вариантов ведется накопление фактов, что даёт возможность в конечном счете произвести отбор наиболее реальных и вероятных ситуаций. Активное использование методов численного моделирования позволяет резко сократить сроки научных и конструкторских разработок.

    Метод моделирования непрерывно развивается, на смену одним типам моделей по мере прогресса науки приходят другие. В то же время неизменным остается одно: важность, актуальность, а иногда и незаменимость моделирования как метода научного познания.
    1   2   3   4   5   6   7


    написать администратору сайта