Лаораторная 1. 1. моделирование как метод исследования содержание, цели и задачи учебной дисциплины Предметная область дисциплины
Скачать 0.9 Mb.
|
Системный подход. Это направление методологии научного познания и социальной практики, в основе которого лежит рассмотрение объектов как систем. Системный подход опирается на ряд требований, предъявляемых к исследованию: выявление отдельных элементов, входящих в систему, и выяснение зависимости каждого элемента от его места и функции в системе; признание, что свойство системы не сводимо к сумме свойств её элементов; изучение иерархичных уровней данной системы и выделение в ней подсистем; 4) анализ поведения системы в зависимости от особенностей её отдельных элементов и свойства ее структуры; обеспечение всестороннего многоаспектного описания системы; исследование механизма взаимодействия системы и среды; 7) рассмотрение системы как динамичной, развивающейся целостности. Специфика системного подхода определяется тем, что он ориентирует исследование на раскрытие целостности развивающегося объекта и обеспечивающих ее механизмов, на выявление многообразных типов связей сложного объекта и сведение их в единую теоретическую картину. Понятие «система» греческого происхождения, в дословном переводе означает целое, составленное из частей; соединение. Поэтому под системой понимают множество элементов, находящихся в отношениях и связях друг с другом, образующих определенную целостность и единство. Различают открытые и закрытые системы, динамические и статические, материальные и абстрактные. Открытые системы обмениваются со средой энергией и веществом, закрытые (или замкнутые) - только энергией. Согласно второму закону термодинамики каждая закрытая система в конечном счете достигает состояния равновесия, при котором остаются неизменными все макроскопические величины системы и прекращаются все макроскопические процессы. Стационарным состоянием открытой системы является подвижное равновесие, при котором все макроскопические величины остаются неизменными, но непрерывно продолжаются макроскопические процессы ввода и вывода вещества. Существуют также самоорганизующиеся системы. «Самоорганизация» - это понятие, которое характеризует процесс создания, воспроизведения или совершенствования организации сложной, открытой динамической, саморазвивающейся системы, связи между элементами которой имеют не жесткий, а вероятностный характер (живая клетка, организм, биологическая популяция, человеческий коллектив и т.п.). Таким образом, самоорганизующиеся системы – это системы, способные корректировать свое состояние, развивать и совершенствовать. В современной науке самоорганизующиеся системы являются предметом исследования специальной науки – синергетики. Материальные системы представлены в неорганической природе физическими, геологическими, химическими системами, в органической природе – живой клеткой, организмом, видом вплоть до экосистемы. Особый класс материальных систем образуют социальные системы. Они представлены как простейшими социальными объединениями, так и социально-экономической структурой общества. Абстрактные системы являются продуктом человеческого мышления. В их число входят гипотезы, теории, научное знание в целом. Структурно-функциональный (структурный) метод. Нередко рассматривается как разновидность системного подхода. Он ориентирует исследование на выявление структуры системы, т.е. совокупности устойчивых отношений и взаимосвязей между ее элементами и их роли (функций) относительно друг друга. Структура понимается как нечто инвариантное (неизменное) при определенных преобразованиях, а функция как предназначение каждого элемента для определенного действия. Этот метод предъявляет следующие требования к исследованию: изучение строения, структуры системного объекта; исследование его элементов и их функциональных характеристик; анализ изменения этих элементов и их функций; рассмотрение развития системного объекта в целом; 5) представление объекта как гармонически функционирующей системы, все элементы которой «работают» на поддержание этой гармонии. Общелогические методы познания Как уже отмечалось, общелогические методы познания являются самыми распространенными приемами мыслительной деятельности, которые формировались вместе с развитием самой познавательной деятельности. К ним относятся анализ и синтез, индукция и дедукция, логический и исторический методы, метод абдукции. В научном познании эти методы получают глубокое обоснование и многообразные формы проявления. Остановимся на них подробнее. Анализ и синтез Под анализом понимают метод, при котором происходит мысленное или реальное разделение предмета исследования на составные части с целью их отдельного изучения. В качестве частей могут быть какие-то вещественные элементы объекта или же его свойства, признаки, отношения. В науке Нового времени аналитический метод был абсолютизирован. Но в реальности этот метод составляет лишь первый этап познания. Его обязательно должен сопровождать синтез. Синтез - это метод изучения объекта в целостности на базе изученных отдельных его сторон в процессе анализа. При этом синтез не означает простого механического соединения разъединенных анализом элементов в единую систему. Он раскрывает место и роль каждого элемента в системе целого, устанавливает их взаимосвязь и взаимообусловленность. Другими словами, синтез позволяет понять подлинное диалектическое единство изучаемого объекта. Анализ и синтез с успехом используются как на эмпирическом, так и теоретическом уровнях научного познания. Но в любом случае, это не две оторванные друг от друга мыслительные операции, а две стороны единого аналитико-синтетического метода познания. В современной науке получил распространение так называемый системный анализ. Системный анализ является одним из важных разделов современной прикладной методологии, в котором задействованы методы и процедуры, почерпнутые из современной науки. Есть два смысла его толкования: 1) в узком смысле – совокупность методологических средств, используемых для подготовки и обоснования решений по сложным проблемам политического, военного, социального, экономического, научного, технического характера; 2) в широком смысле – синоним системного подхода. Важнейшие принципы системного анализа состоят в следующем: процесс принятия решений должен начинаться с выявления и четкого формирования конечных целей; необходимо рассматривать всю проблему как целое, как единую систему и выявлять все последствия и взаимосвязи каждого частного решения; выявление и анализ возможных альтернативных путей достижения цели; - цели отдельных подразделений не должны вступать в конфликт с целями всей программы. Центральной процедурой системного анализа является построение обобщенной модели (или моделей), отображающей все факторы и взаимосвязи реальной ситуации, которые могут проявляться в процессе осуществления решений. Полученная модель исследуется с целью выяснения близости результата применения того или иного из альтернативных вариантов действий к желаемому, сравнения затрат ресурсов по каждому из вариантов, уточнения ее чувствительности к различным нежелательным внешним воздействиям. Системный анализ опирается на ряд прикладных математических дисциплин и методов, а также ЭВМ и информационные системы. Привлечение метода системного анализа необходимо в тех случаях, когда приходится принимать решения в условиях неопределенности, которая связана с наличием факторов, не поддающихся строгой количественной оценке. Процедуры и методы системного анализа направлены именно на выдвижение альтернативных вариантов решения проблемы, выявление масштабов неопределенности по каждому из вариантов и сопоставление вариантов по тем или иным критериям эффективности. Индукция и дедукция Индукция (от лат. induction – наведение, побуждение) есть метод познания, основывающийся на формально-логическом умозаключении, которое приводит к получению общего вывода на основании частных посылок. В самом общем виде индукция есть движение нашего мышления от частного, единичного к общему. В этом смысле индукция - широко используемый прием мышления на любом уровне познания. Метод научной индукции многозначен. Он используется для обозначения не только эмпирических процедур, но и для обозначения некоторых приемов, относящихся к теоретическому уровню, где представляет собой, по сути, различные формы дедуктивных рассуждений. Разберем индукцию как прием эмпирического познания. Обоснование индукции как метода связано с именем Аристотеля. Для Аристотеля была характерна так называемая интуитивная индукция. Это одно из первых представлений об индукции среди многих её формулировок. Интуитивная индукция – это мыслительный процесс, посредством которого из некоторого множества случаев выделяется общее свойство или отношение и отождествляется скаждым отдельным случаем. Многочисленные примеры подобного рода индукции, применяемой как в обыденной жизни, так и в научной практике, математике приведены в книге известного математика Д. Пойа. (Интуиция //Д. Пойа. Математика и правдоподобные рассуждения. - М., 1957). Например, наблюдая некоторые числа и их комбинации, можно натолкнуться на соотношения 3+7=10, 3+17=20, 13+17=30 и т. д. Здесь обнаруживается сходство в получении числа, кратного десяти. Или другой пример: 6=3+3, 8=3+5, 10=3+7=5+5, 12=5+7 и т. д. Очевидно, что мы сталкиваемся с фактом, что сумма нечетных простых чисел есть всегда четное число. Эти утверждения получены в ходе наблюдения и сравнения арифметических операций. Продемонстрированные примеры индукции целесообразно назвать интуитивной, так как сам процесс вывода не является логическим выводом в точном смысле этого слова. Здесь мы не имеем дела с рассуждением, которое разлагалось бы на посылки и заключения, а просто с восприятием, «схватыванием» отношений и общих свойств непосредственно. Мы не прилагаем никаких логических правил, а догадываемся. Нас просто озаряет понимание некой сути. Такая индукция важна в научном познании, но она не является предметом формальной логики, а изучается теорией познания и психологией творчества. Более того, подобной индукцией мы пользуемся на обыденном уровне познания постоянно. Как создатель традиционной логики Аристотель называет индукцией и другую процедуру, а именно: установления общего предложения путем перечисления в форме единичных предложений всех случаев, которые подводимы под него. Если мы смогли перечислить все случаи, а это имеет место, когда число случаев ограничено, то мы имеем дело с полной индукцией. В данном случае у Аристотеля процедура выведения общего предложения фактически является случаем дедуктивного вывода. Когда же число случаев не ограничено, т.е. практически бесконечно, мы имеем дело с неполной индукцией. Она представляет собой эмпирическую процедуру и является индукцией в собственном смысле слова. Это процедура установления общего предложения на основании нескольких отдельных случаев, в которых наблюдалось определенное свойство, характерное для всех возможных случаев, сходных снаблюдаемым, называется индукцией через простое перечисление. Это и есть популярная или традиционная индукция. Главной проблемой полной индукции является вопрос о том, насколько основательно, правомерно такое перенесение знания с отдельных известных нам случаев, перечисляемых в отдельных предложениях, на все возможные и даже еще неизвестные нам случаи. Это есть серьезная проблема научной методологии и обсуждается она в философии и логике со времен Аристотеля. Это так называемая проблема индукции. Она камень преткновения для метафизически мыслящих методологов. В реальной научной практике популярная индукция применяется абсолютно самостоятельно крайне редко. Чаще всего она используется, во-первых, наряду с более совершенными формами метода индукции и, во-вторых, в единстве с дедуктивными рассуждениями и другими формами теоретического мышления, которые повышают правдоподобность знания, полученного этим способом. Когда в процессе индукции осуществляется перенос, экстраполяция вывода, справедливого для конечного числа известных членов класса, на все члены этого класса, то основанием для такого переноса является абстракция отождествления, состоящая в предположении, что в данном отношении все члены этого класса тождественны. Такая абстракция является либо допущением, гипотезой, и тогда индукция выступает как способ подтверждения этой гипотезы, либо абстракция покоится на каких-то других теоретических предпосылках. В любом случае индукция так или иначе связана с различными формами теоретических рассуждений, дедукцией. Дедукция (от лат. deduction - выведение) есть получение частных выводов на основе знания каких-то общих положений. Другими словами, это есть движение нашего мышления от общего к частному, единичному. В более специальном смысле термин «дедукция» обозначает процесс логического вывода, т.е. перехода по тем или иным правилам логики от некоторых данных предложений (посылок) к их следствиям (заключениям). Дедукцией также называют общую теорию построения правильных выводов (умозаключений). Изучение дедукции составляет главную задачу логики – иногда формальную логику даже определяют как теорию дедукции, хотя дедукция изучается и теорией познания, психологией творчеств. Термин «дедукция» появился в средние века и введён Боэцием. Но понятие дедукции как доказательства какого-либо предложения посредством силлогизма фигурирует уже у Аристотеля («Первая аналитика»). Примером дедукции как силлогизма будет следующий вывод. Первая посылка: карась – рыба; вторая посылка: карась живет в воде; вывод (умозаключение): рыба живет в воде. В средние века господствовала силлогистическая дедукция, исходные посылки которой черпались из священных текстов. В Новое время заслуга преобразования дедукции принадлежит Р. Декарту (1596-1650). Он критиковал средневековую схоластику за ее метод дедукции и считал этот метод не научным, а относящимся к области риторики. Вместо средневековой дедукции Декарт предложил точный математизированный способ движения от самоочевидного и простого к производному и сложному. Свои представления о методе Р. Декарт изложил в работе «Рассуждение о методе», «Правила для руководства ума». Им предлагаются четыре правила. Первое правило. Принимать за истинное все то, что воспринимается ясно и отчетливо и не дает повода к какому-либо сомнению, т.е. вполне самоочевидно. Это указание на интуицию как исходный элемент познания и рационалистический критерий истины. Декарт верил в безошибочность действия самой интуиции. Ошибки, по его мнению, проистекают от свободной воли человека, способной вызвать произвол и путаницу в мыслях, но никак от интуиции разума. Последняя свободна от какого бы то ни было субъективизма, потому что отчетливо (непосредственно) осознает то, что отчетливо (просто) в самом познаваемом предмете. Интуиция есть осознание «всплывших» в разуме истин и их соотношений, и в этом смысле – высший вид интеллектуального познания. Она тождественна первичным истинам, называемым Декартом врожденными. В качестве критерия истины интуиция есть состояние умственной самоочевидности. С этих самоочевидных истин начинается процесс дедукции. Второе правило. Делить каждую сложную вещь на более простые составляющие, не поддающиеся дальнейшему делению умом на части. В ходе деления желательно дойти до самых простых, ясных и самоочевидных вещей, т.е. до того, что непосредственно дается интуицией. Иначе говоря, такой анализ имеет целью открыть исходные элементы знания. Здесь надо отметить, что анализ, о котором говорит Декарт, не совпадает с анализом, о котором говорил Бэкон. Бэкон предлагал разлагать предметы вещественного мира на «натуры» и «формы», а Декарт обращает внимание на разделение проблем на частные вопросы. Второе правило метода Декарта вело к двум, одинаково важным для научно-исследовательской практики XVIII века, результатам: 1) в итоге анализа исследователь располагает объектами, которые поддаются уже эмпирическому рассмотрению; 2) философ-теоретик выявляет всеобщие и потому наиболее простые аксиомы знания о действительности, которые могут уже послужить началом дедуктивного познавательного движения. Таким образом, декартов анализ предшествует дедукции как подготавливающий ее этап, но от нее отличный. Анализ здесь сближается с понятием «индукция». Выявляемые анализирующей индукцией Декарта исходные аксиомы оказываются по своему содержанию уже не только прежде неосознававшимися элементарными интуициями, но и искомыми, предельно общими характеристиками вещей, которые в элементарных интуициях являются «соучастниками» знания, но в чистом виде выделены ещё не были. Третье правило. В познании мыслью следует идти от простейших, т.е. элементарных и наиболее для нас доступных вещей к вещам более сложным и, соответственно, трудным для понимания. Здесь дедукция выражается в выведении общих положений из других и конструировании одних вещей из других. Обнаружение истин соответствует дедукции, оперирующей затем ими для выведения истин производных, а выявление элементарных вещей служит началом последующего конструирования вещей сложных, а найденная истина переходит к истине следующей ещё неизвестной. Поэтому собственно мыслительная дедукция Декарта приобретает конструктивные черты, свойственные в зародыше так называемой математической индукции. Последнюю он и предвосхищает, оказываясь здесь предшественником Лейбница. |