Главная страница
Навигация по странице:

  • 1. Инициация

  • Образование пептидной связи

  • Транслокация

  • Посттрансляционные модификации полипептидной цепи.

  • Ковалентные модификации

  • Фосфорилирование

  • Гликозилирование.

  • Биохимия итоговая. Итоговая работа 2 по БХ (занятие 10). 1. Общая схема распада нуклеиновых кислот пищи, ферменты, субстраты, продукты


    Скачать 1.5 Mb.
    Название1. Общая схема распада нуклеиновых кислот пищи, ферменты, субстраты, продукты
    АнкорБиохимия итоговая
    Дата20.04.2022
    Размер1.5 Mb.
    Формат файлаdocx
    Имя файлаИтоговая работа 2 по БХ (занятие 10).docx
    ТипДокументы
    #486910
    страница5 из 6
    1   2   3   4   5   6

    Рибосомы- Рибонуклеопротеиновые субклеточные структуры, являющиеся местом синтеза белков. Белки входят в состав субъединиц рибосомы в количестве одной копии и выполняют структурную функцию, обеспечивая взаимодействие между мРНК и тРНК, связанными с аминокислотой или пептидом.

    Как связывание субстратов, так и ферментативный катализ на макромолекулах, включая белки и надмолекулярные комплексы, происходят, как правило, не на гладких молекулярных поверхностях, а в углублениях макромолекул, в основаниях выступов, в щелях и полостях между субъединицами или доменами - в так называемых структурных карманах. Основная морфологическая черта электронно-микроскопических изображений рибосомы - борозда, разделяющая две рибосомные субчастицы Эта борозда сильно расширяется в одном месте: виден так называемый "глаз" рибосомы. Указанная особенность отражает реальный факт существования значительной полости между двумя рибосомными субчастицами. Как показано самыми последними электронно-микроскопическими исследованиями с высоким разрешением, именно в этой полости размещаются основные субстраты рибосомы - молекулы пептидил-тРНК и аминоацил-тРНК , участвующие в образовании полипептидной цепи Это тРНК-связывающий центр рибосомы . Теперь рассмотрим отдельно малую рибосомную субчастицу). Она разделяется глубокой бороздой на головку и тело. Эта глубокая борозда - шея - есть место, в котором размещается участок связывания мРНК и через которое цепь мРНК протягивается от одного конца к другому в процессе трансляции У большой рибосомной субчастицы тоже есть головка - это центральный выступ, среди трех видимых выступов данной субчастицы) . В шее (борозде, отделяющей головку от тела) размещается главный каталитический центр рибосомы - пептидил-трансферазный центр , осуществляющий синтез пептидных связей.

    две шеи находятся напротив друг друга и что между шеями как раз и расположен "глаз" - межсубчастичная полость, размещающая в себе молекулы двух субстратных тРНК. Так как каждая тРНК в рибосоме одним своим концом - антикодоном - должна взаимодействовать с кодоном мРНК, а другим, акцепторным концом, несущим аминокислоту или пептид, - с пептидил-трансферазным центром, то ее положение в рибосоме в отношении двух рибосомных субчастиц определяется однозначно: антикодон тРНК сидит в шее малой субчастицы, а акцепторный конец - в шее большой субчастицы.

    Наконец, важные характерные черты рибосомы - подвижный палочкообразный боковой выступ большой субчастицы, справа от головки и непокрытая малой субчастицей площадка большой субчастицы у основания выступа Наблюдения и эксперименты позволяют предполагать следующую картину событий: площадка принимает на себя поступающую в рибосому новую аминоацил-тРНК в комплексе со специальным белком - фактором элонгации 1 (EF1). При этом палочкообразный отросток взаимодействует с фактором и ориентируется более или менее перпендикулярно плоскости раздела между субчастицами. В результате образуется карман между непокрытой площадкой большой субчастицы, боковой поверхностью малой субчастицы и палочкообразным отростком. Этот же карман может принимать другой белок - фактор элонгации 2 (EF2), связывающийся с рибосомой для производства механического акта - транслокации. Третий ) - выступ большой субчастицы и примыкающая к нему лопасть (боковое "ребро"), по-видимому, непосредственно участвуют в ассоциации рибосомных субчастиц. Со стороны малой рибосомной субчастицы в ассоциации субчастиц участвует боковая лопасть ее "тела"

    22.  Активация аминокислот. Аминоацил-т-РНК синтетазы, субстратная специфичность.

    Аминоацил-тРНК синтетазы осуществляют активацию аминокислот в 2 стадии: на первой стадии аминокислота присоединяется к ферменту и реагирует с АТФ с образованием богатого энергией промежуточного соединения - аминоацил-АМФ. На второй стадии аминоацильный остаток аминоациладенилата, оставаясь связанным с ферментом, взаимодействует с молекулой соответствующей тРНК с образованием аминоацил-тРНК

    Суммарную реакцию, катализируемую аминоацил-тРНК синтетазами в присутствии ионов Mg2+, можно представить следующим образом: Аминокислота +тРНК + АТФ -" аминоацил - тРНК + АМФ + PPi.

    Для каждой аминокислоты существует свой фермент - своя аминоацил тРНК синтетаза: для глутамата - глутамил-тРНК синтетаза, гистидина - гистидил-тРНК синтетаза и т.д.

    Аминокислоты присоединяются к 3'- или 2'-ОН группам рибозы на 3'-конце тРНК, где все тРНК имеют общую нуклеотидную последовательность -ССА.

    Энергия, заключённая в макроэргической сложноэфирной связи аминоацил-тРНК, впоследствии используется на образование пептидной связи в ходе синтеза белка.

    Пирофосфат, выделяющийся в ходе этой реакции, гидролитически расщепляется с образованием двух молекул ортофосфата и выделением энергии, что делает реакцию активации аминокислот необратимой.

    Чрезвычайно высокая специфичность аа-тРНК синтетаз в связывании аминокислоты с соответствующими тРНК лежит в основе точности трансляции генетической информации. В активном центре этих ферментов есть 4 специфических участка для узнавания: аминокислоты, тРНК, АТФ и четвёртый - для присоединения молекулы Н2О, которая участвует в гидролизе неправильных аминоациладенилатов. За счёт существования в активном центре этих ферментов корректирующего механизма, обеспечивающего немедленное удаление ошибочно присоединённого аминокислотного остатка, достигается поразительно высокая точность работы: на 1300 связанных с тРНК аминокислот встречается только одна ошибка.

    Аминокислота, присоединяясь к тРНК, в дальнейшем не определяет специфических свойств аа-тРНК, так как её структуру не узнаёт ни рибосома, ни мРНК. Участие в синтезе белка зависит только от структуры тРНК, а точнее, от комплементарного взаимодействия антикодона аминоацил-тРНК с кодоном мРНК.

    Антикодон расположен в центральной (антикодоновой) петле тРНК. Узнавание тРНК аа-тРНК синтетазами не всегда происходит по антикодоновой петле. Активный центр некоторых ферментов обнаруживает комплементарное соответствие другим участкам пространственной структуры тРНК.

    23.  Сборка полипептидной цепи на рибосоме. Образование инициаторного комплекса у прокариот.   Особенности стадии инициации у эукариот.

    В ходе синтеза белка прочтение информации мРНК идёт в направлении от 5'- к З'-концу, обеспечивая синтез пептида от N- к С-концу.

    Каждая эукариотическая мРНК кодирует строение только одной полипептидной цепи (т.е. она моноцистронна), в отличие от прокариотических мРНК, которые часто содержат информацию о нескольких пептидах (т.е. они поли-цистронны). Эти различия вызваны тем, что у прокариотов ДНК лишена интронов, и РНК-полимераза транскрибирует участки, прочтение информации с которых подчиняется общему регуляторному механизму. Кроме того, на полицистронных мРНК синтез белка начинается до того, как заканчивается их собственный синтез, так как процессы транскрипции и трансляции не разделены. У эукариотов трансляция протекает в цитоплазме, куда из ядра поступают уже "зрелые" мРНК.

    События на рибосоме включают этапы: инициации, элонгации и терминации.

    1. Инициация

    Инициация трансляции представляет собой событие, в ходе которого происходит образование комплекса, включающего Мет-тРНКiМет, мРНК и рибосому, где тРНКiМет - инициирующая метиониновая тРНК (рис. 4-37). В этом процессе участвуют не менее 10 факторов инициации, которые обозначают как elF (от англ. eukaryotic initiation factors) с указанием номера и буквы. Первоначально 40S субъединица рибосомы соединяется с фактором инициации, который препятствует ее связыванию с 60S субъединицей, но стимулирует объединение с тройным комплексом, включающим Мет-тРНКiМет, eIF-2 и ГТФ. Затем этот теперь уже более сложный комплекс связывается с 5'-концом мРНК при участии нескольких elF. Один из факторов инициации (eIF-4F) узнаёт и присоединяется к участку "кэп" на молекуле мРНК, поэтому он получил название кэпсвязывающе-го белка. Прикрепившись к мРНК, 40S субъединица начинает скользить по некодирующей части мРНК до тех пор, пока не достигнет инициирующего кодона AUG кодирующей нуклеотидной последовательности. Скольжение 40S субъединицы по мРНК сопровождается гидролизом АТФ, энергия которого затрачивается на преодоление участков спирализации в нетранслируемой части мРНК. В эукариотических клетках некодирующие участки мРНК имеют разную длину, но обычно от 40 до 80 нуклеотидов, хотя встречаются области с протяжённостью более 700 нуклеотидов.

    Достигнув начала кодирующей последовательности мРНК, 40S субъединица останавливается и связывается с другими факторами инициации, ускоряющими присоединение 60S субъединицы и образование 80S рибосомы за счёт гидролиза ГТФ до ГДФ и неорганического фосфата. При этом формируются А- и Р-центры рибосомы, причём в Р-центре оказывается AUG-кодон мРНК с присоединённым к нему Мет-тРНКiМет.

    В клетках есть 2 различающиеся по структуре тРНК, узнающие кодон AUG. Инициирующий кодон узнаёт тРНКiМет, а триплеты мРНК, кодирующие включение метионина во внутренние участки белка, прочитываются другой тЗРК Мет

    24.  Элонгация: образование пептидной связи (р-ция транспептидации). Транслокация. Терминация. Роль белковых факторов на каждой из стадий трансляции.

    По завершении инициации рибосома располагается на мРНК таким образом, что в Р-центре находится инициирующий кодон AUG с присоединённой к нему Мет-тРНК шМет, а в А- центре - триплет, кодирующий включение первой аминокислоты синтезируемого белка. Далее начинается самый продолжительный этап белкового синтеза - элонгация, в ходе которого рибосома с помощью аа-тРНК последовательно "читает" мРНК в виде триплетов нуклеоти-дов, следующих за инициирующим кодоном в направлении от 5' к 3'-концу, наращивая полипептидную цепочку за счёт последовательного присоединения аминокислот.

    Включение каждой аминокислоты в белок происходит в 3 стадии, в ходе которых: 1)аа-тРНК каждой входящей в белок аминокислоты связывается с А-центром рибосомы; 2)пептид от пептидил-тРНК, находящейся в Р-центре, присоединяется к б-NH2-гpyппe аминоацильного остатка аа-тРНК А-центра с образованием новой пептидной связи; 3)удлинённая на один аминокислотный остаток пептидил-тРНК перемещается из А-центра в Р-центр в результате транслокации рибосомы.

    Связывание аминоацил-тРНК в А-центре. Кодон мРНК, располагающийся в А-центре рядом с инициирующим кодоном, определяет природу аа1тРНКaa1, которая будет включена в А-центр. аа1тРНКaa1 взаимодействует с рибосомой в виде тройного комплекса, состоящего из фактора элонгации EF-1, аа1тРНКaa1 и ГТФ. Комплекс эффективно взаимодействует с рибосомой лишь в том случае, если антикодон аа-тРНКaa1 комплементарен и антипараллелен ко-дону мРНК в А-центре. Включение аа-тРНКaa1 в рибосому происходит за счёт энергии гидролиза ГТФ до ГДФ и неорганического фосфата. Образование пептидной связи происходит сразу же после отщепления комплекса EF-1 и ГДФ от рибосомы. Эта стадия процесса получила название реакции транспептидации

    В ходе этой реакции остаток метионина Мет-тРНКIМет связывается с a-аминогруппой первой аминокислоты, присоединённой к тРНКaa1 и расположенной в А-центре, образуется первая пептидная связь.

    Транслокация - третья стадия элонгации. К рибосоме присоединяется фактор элонгации EF-2 и за счёт энергии ГТФ продвигает рибосому по мРНК на один кодон к 3'-концу. В результате дипептидил-тРНК, которая не меняет своего положения относительно мРНК, из А-центра перемещается в Р-центр. Свободная от метионина тРНКiМет покидает рибосому, а в область А-центра попадает следующий кодон.

    По завершении третьей стадии элонгации рибосома в Р-центре имеет дипептидил-тРНК, а в А-центр попадает триплет, кодирующий включение в полипептидную цепь второй аминокислоты. Начинается следующий цикл стадии элонгации, в ходе которого на рибосоме снова проходят вышеописанные события. Повторение таких циклов по числу смысловых кодонов мРНК завершает весь этап элонгации.

    Терминация трансляции наступает в том случае, когда в А-центр рибосомы попадает один из стоп-кодонов: UAG, UAA или UGA. Для стоп-кодонов нет соответствующих тРНК. Вместо этого к рибосоме присоединяются 2 белковых высвобождающих фактора RF или фактора терминации. Один из них с помощью пептидилтрансферазного центра катализирует гидролитическое отщепление синтезированного пептида от тРНК. Другой за счёт энергии гидролиза ГТФ вызывает диссоциацию рибосомы на субъединицы

    Таким образом, матричная природа процесса трансляции проявляется в том, что последовательность поступления аминоацил-тРНК в рибосому для синтеза белка строго детерминирована мРНК, т.е. порядок расположения кодонов вдоль цепи мРНК однозначно задаёт структуру синтезируемого белка. Рибосома сканирует цепь мРНК в виде триплетов и последовательно отбирает из окружающей среды "нужные" аа-тРНК, освобождая в ходе элонгации деацилированные тРНК.

    Малая и большая субъединицы рибосомы в процессе трансляции выполняют разные функции: малая субъединица присоединяет мРНК и декодирует информацию с помощью тРНК и механизма транслокации, а большая субъединица ответственна за образование пептидных связей.

    25.  Регуляция биосинтеза белков на уровне трансляции. Изменение скорости трансляции.

    Синтез белков в ретикулоцитах. Известно, что на этом уровне дифференцировки кроветворные клетки лишены ядра и ДНК. Регуляция синтеза белка-глобина осуществляется только на уровне трансляции и зависит от содержания тема в клетке. Если внутриклеточная концентрация тема высока, то глобин синтезируется; когда содержание тема снижается, то ингибируется и образование глобина. Остановка синтеза белка осуществляется за счёт фосфорилирования фактора инициации eIF2, который в фосфорилированной форме неактивен. Гем предотвращает фосфорилирование eIF2, связываясь со специфической протеинкиназой, которая получила название гемкиназы.

    Некоторые мРНК содержат элементы вторичной структуры на 5'- или 3'-концах нетранслируемого участка мРНК, к которым могут присоединяться белки и ингибировать трансляцию. Например, синтез ферритина - белка, обеспечивающего хранение ионов железа в клетке, усиливается при повышении внутриклеточной концентрации железа Обнаружено, что мРНК ферритина на 5'-конце имеет петли, к которым при низкой концентрации железа присоединяется регудяторный белок. Когда этот белок связан с мРНК, то трансляция не идёт. Если концентрация ионов железа в клетке повышается, то Fe3+ взаимодействует с белком, изменяет его конформацию и сродство к мРНК. мРНК освобождается от регуляторного белка, и на ней начинается синтез ферритина.

    26.  Процессинг первичных полипептидных цепей после трансляции: частичный протеолиз, образование ковалентных связей, присоединение простетических групп, ковалентная модификация аминокислотных остатков (гликозилирование, метилирование, фосфорилирование, ацетилирование).

    Посттрансляционные модификации полипептидной цепи. Полипептидные цепи могут подвергаться структурным модификациям, либо будучи ещё связанными с рибосомами, либо после завершения синтеза. Эти конформационные и структурные изменения полипептидных цепей получили название посттрансляционных изменений. Они включают удаление части полипептидной цепи, ковалентное присоединение одного или нескольких низкомолекулярных лигандов, приобретение белком нативной конформации.

    Многие модификации осуществляются в ЭР. Здесь происходят фоддинг полипептидных цепейи формирование уникальной третичной или четвертичной структуры белков. Причём для поддержания нативной конформации молекул огромное значение имеет правильное формирование дисульфидных связей.

    Частичный протеолиз. Многие белки, секретируемые из клеток, первоначально синтезируются в виде молекул-предшественников, функционально неактивных. Удаление части полипептидной цепи специфическими эндопротеазами приводит к образованию активных молекул. Некоторые белки-предшественники расщепляются в ЭР или аппарате Гольджи, другие - после секреции. Так, неактивные предшественники секретируемых ферментов - зимогены - образуют активный фермент после расщепления по определённым участкам молекулы: зимоген панкреатической железы трипсиноген превращается в активный трипсин после секреции в тонкий кишечник.

    Наглядным примером последовательного двухстадийного протеолиза служит образование активных форм пептидных гормонов (например, инсулина или глюкагона) из препрогормонов. Первоначально N-концевой сигнальный пептид молекулы-предшественника удаляется в ЭР в процессе синтеза белка и образуется неактивный прогормон. Затем прогормон в секреторных гранулах, формирующихся в аппарате Гольджи, подвергается действию эндо- или экзопротеаз и превращается в активный гормон.

    Ковалентные модификации Структурные белки и ферменты могут активироваться или инактивироваться в результате присоединения различных химических групп: фосфатных, ацильных, метальных, олигосахаридных и некоторых других.

    • · Фосфорилирование белков осуществляется по гидроксильным группам серина, треонина и, реже, тирозина ферментами из группы протеинкиназ, тогда как дефосфорилирование катализируют гидролитические ферменты фосфопротеинфосфатазы

    • · Гликозилирование. Белки, входящие в состав плазматических мембран или секретирующиеся из клеток, подвергаются гликозилированию. Углеводные цепи присоединяются то гидроксильным группам серина или треонина (О-гликозилирование) либо аспарагина (N-гликозилирование). Последовательное наращивание углеводного фрагмента происходит в ЭР и аппарате Гольджи.

    • · Многочисленным модификациям подвергаются боковые радикалы некоторых аминокислот: в тиреоглобулине йодируются остатки тирозина; в факторах свёртывания крови карбоксилируются остатки глутамата; в ЭР фибробластов гидроксилируются остатки пролина и лизина в цепях тропоколлагена.

    27.  Фолдинг белков. Ферменты. Роль шаперонов в фолдинге белка. Фолдинг белковой молекулы с помощью шаперониновой системы. Болезни, связанные с нарушением фолдинга белка.

    фолдинг и тд "фолдинг белков - Процесс сворачивания полипептидной цепи в правильную пространственную структуру. Индивидуальные белки, продукты одного гена, имеют идентичную аминокислотную последовательность и приобретают в одинаковых условиях клетки одинаковую конформацию и функцию. для многих белков, имеющих сложную пространственную структуру, фолдинг протекает при участии "шаперонов"
    1   2   3   4   5   6


    написать администратору сайта