Главная страница
Навигация по странице:

  • 18. Канцерогенез. Теории канцерогенеза. Понятия о доброкачественных и злокачественных опухолях, их основные свойства. Канцерогенез

  • Гиперплазия

  • Опухоли

  • Классическая мутационная теория

  • Злока́чественное новообразова́ние

  • Опухоли доброкачественные

  • 19. Иммунитет. Органы иммунной системы. Лимфо-миелоидный комплекс. Элементы иммунной системы. Формирование клеточного и гуморального иммунного ответа. Иммунитет

  • Элементы иммунной системы: Костный мозг

  • 20. Биологические ритмы. Медицинское значение хронобиологии. Биологи́ческие ри́тмы

  • и

  • биология. биология зачет. 1. Онтогенез. Факторы, влияющие на индивидуальное развитие организма. Типы онтогенеза. Периодизация онтогенеза человека. Онтогенез


    Скачать 103.92 Kb.
    Название1. Онтогенез. Факторы, влияющие на индивидуальное развитие организма. Типы онтогенеза. Периодизация онтогенеза человека. Онтогенез
    Анкорбиология
    Дата16.06.2020
    Размер103.92 Kb.
    Формат файлаdocx
    Имя файлабиология зачет.docx
    ТипДокументы
    #130731
    страница3 из 4
    1   2   3   4

    Тканевая несовместимость, явление, обусловленное генетическим своеобразием (уникальностью) каждой особи и заключающееся в отторжении органа или ткани, пересаженных от одного организма другому. Определяется различием в антигеном составе клеток донора и реципиента. Преодоление тканевой несовместимости лежит в основе успешной пересадки органов и тканей.
    Репланта́ция-

    оперативное приживление временно отделенного от организма органа или его сегмента. В клинической практике применяют Р. скальпа, чубов, носа, ушной раковины и др. Наибольшее практическое значение имеет Р. конечностей и их сегментов — кистей, стоп, пальцев
    В трансплантационной иммунологии преодоление тканевой несовместимости достигается подавлением иммунного ответа реципиента и созданием иммунологической толерантности. Это не устраняет несовместимости как таковой, но обеспечивает сосуществование генетически разнородных тканей.
    Иммунологическая толерантность — иммунологическое состояние организма, при котором он не способен синтезировать антитела в ответ на введение определённого антигена при сохранении иммунной реактивности к другим антигенам.
    Поиски путей преодоления тканевой несовместимости ведутся в трех направлениях:

    1) воздействие на трансплантат;

    2) воздейст­вие на реципиента;

    3) иммунологическое сближение донора и реци­пиента.

    В качестве воздействия на трансплантат применяются лиофилизация, обработка рентгеновыми лучами и другие способы. Но они, как правило, не дают желаемого результата. Трансплантат рассасывается или в луч­шем случае замещается собственными тканями реципиента.

    Воздействие на реципиента могут оказывать факторы, которые спо­собны подавлять его иммунологические защитные механизмы. Обнару­жено, что этим свойством обладают большие дозы рентгеновых лучей, один из гормонов надпочечников- кортизон, а также химическое соеди­нение 6-меркаптопурин и др. Действие этих веществ само по себе не без­вредно для организма. Кроме того, организм с подавленными защит­ными свойствами легко уязвим для болезнетворных микроорганизмов. В связи с этим во время лечения больной должен находиться в строго стерильных условиях, что трудно осуществимо. Наконец, иммунологи­ческие свойства организма через некоторое время восстанавливаются и трансплантат может подвергнуться рассасыванию либо быть оттор­гнутым.

    В настоящее время ведутся интенсивные исследования путей иммуно­логического сближения.

    18. Канцерогенез. Теории канцерогенеза. Понятия о доброкачественных и злокачественных опухолях, их основные свойства.
    Канцерогенез — сложный патофизиологический процесс зарождения и развития опухоли. (син. онкогенез).

    Из всех предложенных до ныне теорий канцерогенеза, мутационная теория заслуживает наибольшего внимания. Согласно этой теории, опухоли являются генетическими заболеваниями, патогенетическим субстратом которых является повреждение генетического материала клетки (точечные мутации, хромосомные аберрации и т. п.). Повреждение специфических участков ДНК приводит к нарушению механизмов контроля за пролиферацией и дифференцировкой клеток и в конце концов к возникновению опухоли.

    Выделяют следующие стадии формирования опухоли

    1. Гиперплазия ткани

    2. Доброкачественная опухоль

    3. Дисплазия

    4. Рак in situ(преинвазивный)- злокачественная опухоль на начальных стадиях развития

    5. Инвазивный рак

    Вторая стадия (формирование доброкачественной опухоли) может отсутствовать.

    Рак in situ прорастает базальную мембрану . Опухолевые клетки разрушают и замещают собой предсуществующий эпителий. В дальнейшем раковые клетки врастают в лимфатические и кровеносные сосуды с последующим переносом опухолевых клеток и образованием метастазов.

    Дисплазия—общее название последствий неправильного формирования в процессе эмбриогенеза и постнатальном периоде отдельных частей, органов или тканей организма

    Гиперплазия— увеличение числа структурных элементов тканей путём их избыточного новообразования.

    Злока́чественное новообразова́ние — заболевание, характеризующееся появлением бесконтрольно делящихся клеток, способных к инвазии в прилежащие ткани и метастазированию в отдаленные органы. Болезнь связана с нарушением пролиферации и дифференцировки клеток вследствие генетических нарушений.

    Опухоли — патологические образования, возникающие вследствие нарушения механизмов контроля деления, роста и дифференцировки клеток.

    Другие теории канцерогенеза:

    Классическая мутационная теория, описанная выше, дала, по крайней мере, три альтернативных ветви. Это видоизменённая традиционная теория, теория ранней нестабильности и теория анеуплоидии.

    Первая представляет собой возрожденную идею Лоренса Леба (Lawrence A. Loeb) из Вашингтонского университета, высказанную им ещё в 1974 г. По оценкам генетиков, в любой клетке за время её жизни случайная мутация возникает в среднем всего в одном гене. Но, как считает Леб, иногда по тем или иным причинам (под действием канцерогенов или оксидантов либо в результате нарушения системы репликации и репарации ДНК) частота мутаций резко возрастает. Он полагает, что у истоков канцерогенеза лежит возникновение огромного числа мутаций — от 10 000 до 100 000 на клетку. Однако он признаёт, что подтвердить или опровергнуть это очень трудно. Таким образом, ключевым моментом новой версии традиционной теории канцерогенеза остается возникновение мутаций, обеспечивающих клетке преимущества при делении. Хромосомные перестройки в рамках этой теории рассматриваются лишь как случайный побочный продукт канцерогенеза.

    В 1997 г. Кристоф Лингаур и Берт Фогельштейн обнаружили, что в злокачественной опухоли прямой кишки очень много клеток с изменённым числом хромосом. Они предположили, что ранняя хромосомная нестабильность обусловливает появление мутаций в онкогенах и генах-онкосупрессорах. Они предложили альтернативную теорию канцерогенеза, согласно которой в основе процесса лежит нестабильность генома. Этот генетический фактор вместе с давлением естественного отбора может привести к появлению доброкачественной опухоли, которая иногда трансформируется в злокачественную, дающую метастазы.

    В 1999 г. Питер Дюсберг из Калифорнийского университета в Беркли создал теорию, согласно которой рак является следствием исключительно анеуплоидии, а мутации в специфических генах вовсе ни при чем. Термин «анеуплоидия» использовался для описания изменений, вследствие которых клетки содержат число хромосом, не кратное основному набору, но в последнее время его стали применять в более широком смысле. Теперь под анеуплоидией понимают также укорочение и удлинение хромосом, перемещение их крупных участков (транслокации). Большинство анеуплоидных клеток сразу же погибают, но у немногих выживших доза тысяч генов оказывается не такой, как у нормальных клеток. Слаженная команда ферментов, обеспечивающих синтез ДНК и её целостность, распадается, в двойной спирали появляются разрывы, ещё больше дестабилизирующие геном. Чем выше степень анеуплоидии, тем нестабильнее клетка и тем больше вероятность, что в конце концов появится клетка, способная расти где угодно. В отличие от трёх предыдущих теорий, гипотеза изначальной анеуплоидии полагает, что зарождение и рост опухоли в большей степени связаны с ошибками в распределении хромосом, чем с возникновением в них мутаций.

    В 1875 году Конгейм (J.Cohnheim) высказал гипотезу о том, что раковые опухоли развиваются из эмбриональных клеток, оказавшихся ненужными в процессе эмбрионального развития. В 1911 году Рипперт (V.Rippert) предположил, что измененная окружающая среда позволяет эмбриональным клеткам ускользать от контроля со стороны организма над их размножением. В 1921 году Роттер (W.Rotter) высказал предположение о том, что примитивные зародышевые клетки «поселяются» в других органах в процессе развития организма. Все эти гипотезы о причинах развития раковых опухолей долго оставались забытыми и только в последнее время на них стали обращать внимание

    Злокачественная опухоль — это опухоль, свойства которой чаще всего (в отличие от свойств доброкачественной опухоли) делают её крайне опасной для жизни организма, что и дало основание называть её «злокачественной». Злокачественная опухоль состоит иззлокачественных клеток. Часто любую злокачественную опухоль неправильно называют раком (который является лишь частным случаем злокачественной опухоли).

    Злока́чественное новообразова́ние  — заболевание, характеризующееся появлением бесконтрольно делящихся клеток, способных к инвазии в прилежащие ткани и метастазированию в отдаленные органы. Болезнь связана с нарушением пролиферации и дифференцировки клеток вследствие генетических нарушений.

    Опухоли доброкачественные— патологические образования, возникающие вследствие нарушения механизмов контроля деления, роста и дифференцировки клеток.

    Свойства опухолей :

    1)автономность (независимость от организма): опухоль возникает тогда, когда 1 или несколько клеток выходят из-под контроля организма и начинают ускоренно делиться. При этом ни нервная, ни эндокринная (железы внутренней секреции), ни иммунная система (лейкоциты) справиться с ними не могут. Сам процесс выхода клеток из-под контроля организма называется «опухолевой трансформацией».

    2)полиморфизм (разнообразие) клеток: в структуре опухоли могут быть разнородные по строению клетки.

    3)атипия (необычность) клеток: опухолевые клетки отличаются по внешнему виду от клеток ткани, в которой развилась опухоль. Если опухоль растет быстро, она в основном состоит из неспециализированных клеток (иногда при очень быстром росте даже невозможно определить ткань-источник опухолевого роста). Если же медленно, ее клетки становятся похожи на нормальные и могут выполнять часть их функций.
    19. Иммунитет. Органы иммунной системы. Лимфо-миелоидный комплекс. Элементы иммунной системы. Формирование клеточного и гуморального иммунного ответа.
    Иммунитет — одно из базовых понятий медицины, физиологии и вообще биологии. Под иммунитетом понимается невосприимчивость, слабовосприимчивость, сопротивляемость организма инфекциям и инвазиям чужеродных организмов (в том числе — болезнетворных микроорганизмов) и относительная устойчивость к вредным веществам. В более широком смысле это — способность организма противостоять изменению его нормального функционирования под воздействием внешних факторов.
    Элементы иммунной системы:

    Костный мозг (medulla ossea) - оpган кpовотвоpения и центpальный оpган имунной системы. Выделяют кpасный и желтый костный мозг. Общая масса костного мозга у взpослого человека составляет пpимеpно 2,5 - 3 кг. Костный мозг pаспологается в наиболее кpупных костях (позвоночнике и дpугих). Его задача - выpаботка кpовяных клеток, эpитpоцитов и лейкоцитов. Эритроциты -красные кровяные тельца, лейкоциты - белые.

    Тимус (thymus) - вилочковая железа, наpавне с костным мозгом является центpальным оpганом имунной системы, в котоpом из стволовых клеток, поступивших из костного мозга с кpовью, созpевают и диффеpенциpуются, пpойдя pяд пpомежуточных стадий, Т-лимфоциты, ответственные за pеакции клеточного иммунитета. Тимус pасполагается позади веpхней части гpудины между пpавой и левой медиастpальной плевpой.

    Миндалины. Пpоизводят лимфоциты. Расположены на задней веpхней стенке носоглотки. Они пpедставляют собой скопления диффузной лимфоидной ткани, содеpжащие небольших pазмеpов более плотные клеточные массы - лимфоидные узелки.

    Лимфатическая система. Пpедставляет собой систему pазветвленных в оpганах и тканях лимфатических капилляpов, лимфатических сосудов, стволов и пpотоков. Лимфатическая система тесно связана с кpовеносной системой и тканевой жидкостью, котоpая осуществляет подвод питательных веществ к pазличным клеткам. Лимфа уносит в кpовь пpодукты обмена веществ, а также содеpжит защитные клетки (лимфоциты), поглощающие pазличные загpязнения.
    Лимфатические узлы находятся в области сгибательных повеpхностей тела и выполняют pоль защитных "фильтpов", в котоpых выpабатываются лимфоциты, иммунные тела, а также пpоисходит уничтожение болезнетвоpных бактеpий. Поток лимфы необходим для ликвидации последствий воспалений и тpавм.
    Одной из функций лимфатических узлов является хранение белых кровяных клеток, которые называются лимфоцитами и фагоцитами. Лимфоциты и фагоциты являются клетками, в первую очередь ответственными за имунный ответ.
    Некоторые лимфоциты располагаются в костном мозге, и называются В-клетками. Эти клетки образуют специфические антитела , каждое из которых воздействует только на один тип антигенов. Они эффективны только в отношении антигенов, расположенных вне клеток.т.е. свободно плавающих в крови.
    Другие лимфоциты находятся в тимусе. Это Т-клетки. Некоторые из этих клеток - Т-клетки-помощники(Т-хелперы), играют решающую роль в защитной реакции организма. Они помогают координировать работу всех клеток, задействованных в иммунной реакции.
    Другие лимфоциты - Т-клетки -супрессоры - останавливают иммунную реакцию тогда, когда инфекция уничтожена, и больше нет надобности в активной работе иммунной системы.
    Последнюю группу Т-клеток называют "киллеры". Они прикрепляются к дефектным, или пораженным инфекцией клеткам организма, и уничтожают их.
    Следующая группа клеток иммунной системы - фагоциты - атакуют и разрушают "чужаков". Макрофаг, один из фагоцитов, "большой разрушитель" - обволакивает антигены или пораженные инфекцией клетки нашего организма и разрушает их на составные части.

    Селезенка (lien). Располагается в бpюшной полости в области левого подpебеpья, на уpовне от IX до ХI pебpа, имеет фоpму уплощенной и удлиненной полусфеpы. Селезенка получает аpтеpиальную кpовь из селезеночной аpтеpии, котоpая делится на несколько ветвей. Выполняет очистку кpови, удаление "устаpевших" клеток.
    Эшелоны защиты:Организм человека обладает чудесной особенностью защищаться от воздействия различных чужеродных веществ. Защитные реакции чрезвычайно сложны: это глубоко эшелонированная оборона. Первый эшелон ее — кожный и слизистые покровы, второй — лимфатическая система и кровь, третий - клетки и ткани различных органов и систем. В четвертом эшелоне - нервная и эндокринная системы. Каждый из них играет свою, присущую только ему роль, однако деятельность их самым тесным образом взаимосвязана в условиях целостного организма.
    Клеточный иммунный ответ подразумевает формирование клона лимфоцитов (К-лимфоциты, цитотоксические лимфоциты), способных разрушать клетки мишени, мембраны которых содержат чужеродные материалы (например, вирусные белки).

    Клеточный иммунитет задействован в ликвидации вирусной инфекции, а также таких типов бактериальных инфекций как туберкулез, проказа, риносклерома. Раковые клетки тоже разрушаются активированными лимфоцитами.
    Гуморальный иммунный ответ опосредован В-лимфоцитами, которые после распознания микроба начинают активно синтезировать антитела по принципу один тип антигена – один тип антитела. На поверхности одного микроба может быть множество различных антигенов, поэтому обычно вырабатывается целая серия антител, каждое из которых при этом направлено на определенный антиген. Антитела (иммуноглобулины, Ig) – это молекулы белков, способные прилипать к определенной структуре микроорганизма, вызывая его разрушение или скорейшее выведение из организма. Теоретически возможно формирование антител против любого химического вещества, имеющего достаточно большую молекулярную массу. Существует несколько типов иммуноглобулинов, каждый из которых выполняет специфическую функцию. Иммуноглобулины типа А (IgA) синтезируются клетками иммунной системы и выводятся на поверхность кожи и слизистых оболочек. В больших количествах IgA содержатся во всех физиологических жидкостях (слюна, молоко, моча). Иммуноглобулины типа А обеспечивают местный иммунитет, препятствуя проникновению микробов через покровы тела и слизистые оболочки.

    Иммуноглобулины типа M (IgM) выделяются в первое время после контакта с инфекцией. Эти антитела представляют собой большие комплексы способные связывать сразу несколько микробов одновременно. Определение IgM в крови является признаком развития в организме острого инфекционного процесса.

    Антитела типа G (IgG) появляются вслед за IgM и представляют собой основной фактор гуморального иммунитета. Этот тип антител защищает организм на протяжении длительного времени от различных микроорганизмов.

    Иммуноглобулины типа Е (IgE) участвуют в развитии аллергических реакций немедленного типа, тем самым защищая организм от проникновения микробов и ядов через кожу.

    Антитела вырабатываются во время всех инфекционных болезней. Период развития гуморального иммунного ответа составляет примерно 2 недели. За это время в организме вырабатывается достаточное количество антител для нейтрализации инфекции.
    20. Биологические ритмы. Медицинское значение хронобиологии.
    Биологи́ческие ри́тмы — (биоритмы) периодически повторяющиеся изменения характера и интенсивности биологических процессов и явлений. Они свойственны живой материи на всех уровнях ее организации — от молекулярных и субклеточных до биосферы. Являются фундаментальным процессом в живой природе. Одни биологические ритмы относительно самостоятельны (например, частота сокращений сердца, дыхания), другие связаны с приспособлением организмов к геофизическим циклам — суточным (например, колебания интенсивности деления клеток, обмена веществ, двигательной активности животных), приливным (например, открывание и закрывание раковин у морских моллюсков, связанные с уровнем морских приливов), годичным (изменение численности и активности животных, роста и развития растений и др.)
    Биоритмы подразделяются на физиологические и экологические. Физиологические ритмы, как правило, имеют периоды от долей секунды до нескольких минут. Это, например, ритмы давления, биения сердца и артериального давления. Экологические ритмы по длительности совпадают с каким-либо естественным ритмом окружающей среды.
    Биологические ритмы изучает хронобиология и специальный её раздел - биоритмология. 

    Достижения биоритмологии имеют важное значение для организации рационального режима труда и отдыха человека, особенно в экстремальных условиях (работа в ночную смену, в полярных условиях и в космосе, перелёт в другие часовые пояса и т.п.), когда нарушается приуроченность эндогенных биологических ритмов к циклическим изменениям внешней среды. Суточные ритмы клеточной пролиферации учитываются, например, в онкологических клиниках при назначении лекарств, действующих на делящиеся клетки.
    1   2   3   4


    написать администратору сайта