Главная страница
Навигация по странице:

  • 8. Реакции матричного синтеза. Принципы и этапы репликации ДНК. Репликон Последствия нарушения нормальною хода репликации ДНК.

  • 12.Аллель гена. Множественные аллели как результат изменения нуклеотидной последовательности гена. Полигенное наследование. Примеры

  • 13. Ген, его свойства(дискретность, стабильность, лабильность, полиаллизм, специфичность, плейотропия). Особенность организации генов про и эукариот.

  • 14. Независимое и сцепленное наследование признаков. Хромосомная теория наследственности.

  • 15. фенотип как результат реализации генотипа в конкретных условиях среды, среда 1 и 2 порядка, модификации и их характеристики, простые и сложные признаки, норма реакции признака

  • 1. Определение биологии как науки. Предмет и методы биологии. Человек как объект биологии. Биосоциальная природа человека


    Скачать 0.7 Mb.
    Название1. Определение биологии как науки. Предмет и методы биологии. Человек как объект биологии. Биосоциальная природа человека
    АнкорOTVETY_NA_BIOLOGIYu.doc
    Дата24.12.2017
    Размер0.7 Mb.
    Формат файлаdoc
    Имя файлаOTVETY_NA_BIOLOGIYu.doc
    ТипДокументы
    #12789
    страница2 из 17
    1   2   3   4   5   6   7   8   9   ...   17

    6. Химическая организация генетического материала. Структура ДНК и РНК. Виды РНК. Уровни компактизации генетического материала. Молекула нуклеиновой кислоты представляет собой полимер (полинуклеотид), состоящий из последовательно соединенных друг с другом мономеров (нуклеотидов). В свою очередь, каждый нуклеотид представляет собой соединение, в котором присутствуют три различные молекулы: остаток фосфорной кислоты (фосфат), углевод (пентоза) и азотистое основание (пуриновое либо пиримидиновое). Принципиальная схема строения нуклеотида приводится на рис. 1.1.Следует отметить, что нуклеотиды молекул ДНК (дезоксирибонуклеотиды) содержат углевод дезоксирибозу и одно из четырех азотистых оснований — аденин (сокращенно обозначается символом А), гуанин (Г), тимин (Т) и цитозин (Ц), первые два из которых являются производными пурина, а два последних — производными пиримидина. В состав нуклеотидов РНК (рибонуклеотидов) входит другая пентоза (рибоза) и также одно из четырех азотистых оснований — аденин, гуанин, урацил (У) и цитозин (вместо тимина здесь включается пиримидиновое основание урацил). Поскольку в составе молекулы пентозы имеется 5 атомов углерода, то каждый из них можно пронумеровать индексом от Г до 5' (см. рис. 1.1). В каждом нуклеотиде присоединение азотистого основания происходит к первому углеродному атому (Г) пентозы с помощью TV-гликозидной связи. Соединение, состоящее из углевода (пентозы) и азотистого основания, называется нуклеозидом (рис. 1.2). Формирование линейной полинуклеотидной цепочки (первичной структуры молекулы нуклеиновой кислоты) происходит при соединении пентозы одного нуклеотида с фосфатом другого нуклеотида путем образования фосфодиэфирной связи (рис. 1.3). При этом в зависимости от порядкового номера углеродного атома (3'либо 5') концевой молекулы пентозы, участвующего в образовании фосфодиэфирной связи с фосфатом, такая цепочка имеет маркированный 3'-конец и 5'-конец. Существуют две наиболее известные модели, объясняющие механизм упаковки хроматина. Согласно одной из них, наиболее известной в зарубежной литературе, нить ДНК претерпевает пять уровней компактизацни от 2 нм (ее собственный диаметр) до 1400 нм (высококонденсированная метафазная хромосома). Низшим уровнем иерархической организации хромосом считается нуклеосомный. Нуклеосома состоит из кора (сердцевины, стержня) и намотанной на негоДНК(146 п.н„ 1,8 витка). Кор представляет собой гистоновый октамер Н2А, Н2В, НЗ, Н4 (по две молекулы каждого). Хроматин на этой стадии имеет вид «бусин» (глобул диаметром 11 нм), нанизанных на «нить» (молекулярную ДНК). Такая структура обеспечивает компактизацию примерно в 6—7 раз. Вторая ступень компактизации - формирование хроматиновой фибриллы диаметром 30 нм. В этом процессе участвует гистон HI, который связывается с ДНК между нуклеосомными корами и сворачивает нуклеосомную фибриллу в спираль, наполобие соленоида, с шагом в 6-8 нуклеосом. Уровень компактизации на этом этапе достигает примерно 40. Третий этап — петельно-доменный — наиболее сложный. Соленоидная фибрилла складывается, образуя петли различной длины. Общий уровень компак-тизации возрастает до 1000, но, очевидно, может различаться в различных районах хромосомы. Диаметр такой структуры в среднем составляет 300 нм., по-видимому, она наиболее типична для интерфазной хромосомы. На четвертом этапе компактизации 300 нм-фибриллы дополнительно сворачиваются, образуя хроматиды диаметром примерно 600-700 нм.

    Последняя, пятая, ступень компактизации (в 7000 раз) характерна для метафазной хромосомы; ее диаметр равен 1400 нм. Известна и другая схема компактизации хроматина, предложенная Ю.С. Ченцовым. Она основана на данных световой и электронной микроскопии. Согласно этой модели первым уровнем также является нуклеосомный. На втором этапе 8-Ю нуклеосом образуют глобулу, называемую нуклеомером. Ряд сближенных нуклсомеров формируют 20-30-нанометровую фибриллу. Третий уровень - хромомерный. Петли фибрилл ДНП, скрепленные негистоновыми белками, образуют розетковидные структуры. На четвертом - хромонемном уровне происходит их сближение с образованием структур, состоящих из петлевых доменов. Предполагается, что на следующем, пятом, уровне компактизации, характерном для хроматид, происходит спиральная укладка хромонемных нитей.

    7. Функции нуклеиновых кислот в процессе реализации наследственной информации. Кодирование наследственной информации в клетке. Генетический код и его свойства. Этапы реализации генетической информации: транскрипция и постранскрипционные процессы, трансляция и посттрансляционные процессы

    Первично все многообразие жизни обусловливается разнообразием белковых молекул, выполняющих в клетках различные биологические функции. Структура белков определяется набором и порядком расположения аминокислот в их пептидных цепях. Именно эта последовательность аминокислот в пептидных цепях зашифрована в молекулах ДНК с помощью биологического (генетического) кода. Для шифровки 20 различных аминокислот достаточное количество сочетаний нуклеотидов может обеспечить лишь триплетный код, в котором каждая аминокислота шифруется тремя стоящими рядом нуклеотидами. Генетический код — это система записи информации о последовательности расположения аминокислот в белках с помощью последовательного расположения нуклеотидов в и-РНК.

    Св-ва ген. кода:

    1) Код триплетен. Это означает, что каждая из 20 аминокислот зашифрована последовательностью 3 нуклеотидов, называется триплетом или кодоном.

    2) Код вырожден. Это означает, что каждая аминокислота шифруется более чем одним кодоном (исключение метиотин и триптофан)

    3) Код однозначен — каждый кодон шифрует только 1 аминоксилоту

    4) Между генами имеются «знаки препинания» (УАА,УАГ,УГА) каждый из которых означает прекращение синтеза и стоит в конце каждого гена.

    5) Внутри гена нет знаков препинания.

    6) Код универсален. Генетический код един для всех живых на земле существ.

    Транскрипция — это процесс считывания информации РНК, осуществляемой и-РНК полимеразой. ДНК — носитель всей генетической информации в клетке, непосредственного участия в синтезе белков не принимает. К рибосомам — местам сборки белков — высылается из ядра несущий информационный посредник, способный пройти поры ядерной мембраны. Им является и-РНК. По принципу комплементарности она считывает с ДНК при участии фермента называемого РНК — полимеразой. В процессе транскрипции можно выделить 4 стадии:

    1) Связывание РНК-полимеразы с промотором,

    2) инициация — начало синтеза. Оно заключается в образовании первой фосфодиэфирной связи между АТФ и ГТФ и два нуклеотидом синтезирующей молекулы и-РНК,

    3) элонгация — рост цепи РНК, т.е. последовательное присоединение нуклеотидов друг к другу в том порядке, в котором стоят комплементарные нуклеотиды в транскрибируемой ните ДНК,

    4) Терминация — завершения синтеза и-РНК. Промотр — площадка для РНК-полимеразы. Оперон — часть одного гена ДНК.

    Транскри́пция (от лат. transcriptio — переписывание) — процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Другими словами, это перенос генетической информации с ДНК на РНК.

    Транскрипция катализируется ферментом ДНК-зависимой РНК-полимеразой. Процесс синтеза РНК протекает в направлении от 5'- к 3'- концу, то есть по матричной цепи ДНК РНК-полимераза движется в направлении 3'->5'[1]

    Транскрипция состоит из стадий инициации, элонгации и терминации.

    Процессинг РНК (посттранскрипционные модификации РНК) — совокупность процессов в клетках эукариот, которые приводят к превращению первичного транскрипта РНК в зрелую РНК.

    Наиболее известен процессинг матричных РНК, которые во время своего синтеза подвергаются модификациям: кэпированию, сплайсингу и полиаденилированию. Также модифицируются (другими механизмами) рибосомные РНК, транспортные РНК и малые ядерные РНК.

    Трансляцией (от лат. translatio — перевод) называют осуществляемый рибосомой синтез белка из аминокислот на матрице информационной (или матричной) РНК (иРНК или мРНК).

    Процесс трансляции разделяют на

    инициацию — узнавание рибосомой стартового кодона и начало синтеза.

    элонгацию — собственно синтез белка.

    терминацию — узнавание терминирующего кодона (стоп-кодона) и отделение продукта.

    8. Реакции матричного синтеза. Принципы и этапы репликации ДНК. Репликон Последствия нарушения нормальною хода репликации ДНК.

    Роль ферментов в биосинтезе:

    Все реакции катализируются специальными ферментами. С участием ферментов происходит синтез ДНК, иРНК. Существуют специальные ферменты, обеспечивающие захват и соединение АК с из тРНК. В рибосоме в процессе сборки белка работает фермент, сцепляющий АК между собой. Энергетика биосинтеза:

    Биосинтез белка представляет собой цепь синтетических реакций: синтез иРНК, соединение АК с тРНК, сборка белка. Все эти реакции требуют энергетических затрат. Энергия для синтеза белка освобождается при расщеплении АТФ.

    Репликация ДНК = самоудвоение ДНК

    1. Молекула ДНК

    Антипараллельная структура двух цепей

    Диаметр ДНК = 20А

    Полный поворот спирали через каждые 34А

    Каждый нуклеотид занимает 3,4А

    В 1 витке 10 нуклеотидов

    Репликация

    Двойная спираль молекулы ДНК под действием особого фермента ДНК-полимеразы расплетается на 2 полинуклеотидные цепи, затем на каждой из образовавшихся цепей из свободных нуклеотидов ядра в соответствии с принципом комплиментарности достраиваются дочерние дополняющие цепи. Каждая вновь образовавшаяся молекула ДНК состоит из одной материнской цепи и другой, комплиментарной ей, дочерней цепи. Такой способ репликации называется полуконсервативным.

    9. Геном- совокупность генов гаплоидного набора хромосом. Ген- это линейный участок молекул ДНК, в котором закодирована последовательность а/к одной полипептидной цепи молекул белка. Большинство генов эукариот имеют мозайчатое строение, т. е. Состоят и чередующихся кодирующих (экзоны) и не кодирующих (интроны) участков.

    Последовательности:

    Уникальные, т.е. последовательности, представленные в одном экземпляре или немногими копиями.

    Срднеповторяющиеся – последовательности, повторяющиеся сотни и тысячи раз.

    Высокоповторяющиеся, число которых достигает 10 миллионов на геном.

    10.

    11.Классификация генов: структурные, функциональные (гены-модуляторы, ингибиторы, интенсификаторы, модификаторы); гены, регулирующие работу структурных генов (регуляторы, операторы).

    Структурные гены- это гены, контролирующие развитие конкретных признаков. Продуктом первичной активности гена является либо иРНК и далее полипептид, либо рРНК и тРНКю Таким образом, структурные гены содержат информацию об аминокислотных и нуклеотидных последовательностях макромолекул. При их мутациях наблюдаются обширные и разнообразные нарушения организма. Они образованы СРЕДЕПОВТОРЯЮЩИМИСЯ последовательностями ДНК

    3 Вида структурных генов:

    а) Кодирующие аминокислотные последовательности структурных (коллаген) и ферментативных белков. б) Кодирующие аминокислотные последовательности белков, функционирующих во всех клетках (например, рибосомных, гистонов) в)кодирующие последовательность нукоеотидов в молекулах рРНК и тРНК

    Функциональные гены -

    Гены-модуляторы - смещают в ту или иную сторону процесс развития признака или другие генетические явления. Гены ингибиторы- гены, подавляющие действие других генов Гены-интенсификаторы -Гены, повышающие активность некоторых генов. Гены-модификаторы -????????

    Гены регулирующие работу структурных генов:

    Ген-регулятор -функция которого заключается в регуляции процесса транскрипции структурного гена (или генов). Ген-оператор- ????????

    12.Аллель гена. Множественные аллели как результат изменения нуклеотидной последовательности гена. Полигенное наследование. Примеры.

    Аллели( парные гены) — гены находящиеся в одинаковых локуса гомологичных хромосом и обуславливающие формирование альтернативных признаков (например гены, определяющие желтую и зеленую окраску семян гороха в опытах Г. Менделя). Пр мейозе аллельные гены попадают в разные гаметы. При скрещивание особей признаки, определяемые аллельными генами подчиняются законам мендалевского расщепления.

    Множественные аллели- — один из видов взаимодействия аллельных генов, при котором ген может быть представлен не двумя аллелями (как в случаях полного или неполного доминиро­вания), а гораздо большим их числом;

    Примеры: 1.множественные аллели окраски кроликов. Аллель С обеспечивает черную окраску тела; аллель ch - так называемую гималайскую окраску, когда черный цвет имеют уши, кончик морды, кончики лап и хвост; аллель с вызывает альбинизм. Аллель С доминирует над двумя другими, а аллель ch - над аллелем. 2. Наследование групп крови.

    Полигенное наследование. Различные доминантные неаллельные гены могут оказывать действие на один и тот же признак, усиливая его проявление. Такие гены получили название однозначных, или полимерных, а признаки, ими определяемые- полигенных.В этом случае 2 или больше доминантных аллелей в одинаковой степени оказывают влияние на развитие одного и того же признака. Важная особенность полимерии- суммирование действия неаллельных генов на развитие количественных признаков. Биологическое значение полимерии заключается ещё и в том, что определяемые этими генами признаки, более стабильны, чем кодируемые одним геном. У животных и растений полигенные признаки -скороспелость, яйценоскость у кур, количество молока у крупного рогатого скота, у человека- пигментация кожи, рост. Масса тела.

    13. Ген, его свойства(дискретность, стабильность, лабильность, полиаллизм, специфичность, плейотропия). Особенность организации генов про и эукариот.

    Элементарной функциональной единицей наследственного материала, определяющей возможность развития отдельного признака клетки или организма, является ген. Наследственная информация, записанная с помощью генетического кода, хранится в молекуле ДНК. Определяя возможность развития отдельного качества, присущего данной клетке или организму, ген характеризуется дискретностью действия. Ввиду того что в гене заключается информация об аминокислотной последовательности определенного полипептида, его действие является специфичным. Однако в некоторых случаях один и тот же ген как определенная нуклеотидная последовательность может детерминировать синтез не одного, а нескольких полипептидов. То наблюдается в случае альтернативного сплайсинга у эукариот и при перекрывании генов у фагов и прокариот. Такую способность следует оценить как множественное, или плейотропное, действие гена (хотя традиционно под плейотропным действием гена принято принимать участие его продукта — полипептида — в разных биохимических процессах, приводящих к формированию различных сложных признаков).

    14. Независимое и сцепленное наследование признаков. Хромосомная теория наследственности.

    Наряду с признаками, наследуемыми независимо, обнаружены признаки, наследуемые совместно (сцепленно). Экспериментальное наследование этого явления, проведенное Т.Г. Морганом и его группой (1910-1916), подтвердило хромосомную локализацию генов и легло в основу хромосомной теории наследственности. Хромосомная теория наследственности. В работах на плодовой мушке Drosophila melanogaster было установлено, что гены по признак.) совместной их передачи потомкам подразделяются на4 группы. Число таких групп сцепления равно количеству хромосом в гаплоидном наборе. Можно заключить, что развитие признаков, которые наследуются сцепленно, контролируется генами одной хромосомы. Этот вывод обосновывается также данными следующих наблюдений. Скрещивание серой мухи (В) с нормальными крыльями (V) и черной мухи (в) с зачаточными крыльями (v) дает в 1-ом поколении серых гибридов с нормальными крыльями . При скрещивании самца-гибрида 1-го поколения с черной самкой с зачаточными крыльями рождаются особи 2 видое, аналогичных исходным родительским формам, причем в равном количестве. Полученные в проведенных скрещиваниях данные нельзя объяснить независимым наследованием признаков. Рассматриваемые совместно результаты обоих скрещиваний убеждают в том, что развитие альтернативных признаков контролируется различными генами, и сцепленное наследование этих признаков объясняется локализацией генов в одной хромосоме. Основные положения хромосомной теории наследственности, сформулированной Т.Г. Морганом, Ч заключаются в следующем.

    1.Гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов каждой из негомологичных хромосом уникален.

    2.Аллельные гены занимают определенные и идентичные локусы гомологичных хромосом.

    3.В хромосоме гены располагаются в определенной последовательности по ее длине в линейном порядке.

    4.Гены одной хромосомы образуют группу сцепления, благодаря чему имеет место сцепленное наследование некоторых признаков; сила сцепления находится в обратной зависимости от расстояния между генами.

    5.каждый биологический вид характеризуется специфичным набором хромосом кариотипом.

    15. фенотип как результат реализации генотипа в конкретных условиях среды, среда 1 и 2 порядка, модификации и их характеристики, простые и сложные признаки, норма реакции признака,

    Фенотип- совокупность всех признаков и свойств особи, формирующихся в процессе взаимодействия её генетич. структуры (генотипа) и внешней, по отношению к ней, среды. Термин «Ф.» введён В, Иогансеном в 1903. В Ф. не реализуются все генотипич. возможности, и он является лишь частным случаем реализации генотипа в конкретны): условиях. Поэтому даже между однояйцовыми. близнецами, имеющими полностью идентичные генотипы можно выявить заметные фенотипич. различия, если они развивались в разных условиях. Однозначного соответствия между генотипом и Ф. нет: изменения генотипа не всегда сопровождаются изменением Ф.э а изменения Ф. не обязательно связаны с изменениями генотипа. В процессе микрозволюции отбор идёт по Ф. особей. Тем самым в популяциях сохраняются особи либо с широкой нормой реакции, пределы к-рой определяются генотипом, либо особи нужного Ф., определяемого генотипом достаточно жёстко. При наличии в популяции особей разного генотипа отбор по Ф. приводит опосредованно к отбору по генотипу. При отсутствии генотипич. изменчивости отбор по Ф. не даёт результатов, что было продемонстрировано экспериментально В. Иогансеном в опытах по отбору в чистых линиях.

    модификация,- фенотипическое изменение , которое не выходит за пределы "нормы реакции" и вызывается известным фактором внешней среды.
    1   2   3   4   5   6   7   8   9   ...   17


    написать администратору сайта