1. Определение биологии как науки. Связь биологии с другими науками. Значение биологии для медицины
Скачать 0.75 Mb.
|
69.Цитогенетический метод. Кариотип человека. Характеристика методов дифференциального окрашивания хромосом. Денверская и Парижская номенклатура. Классификация хромосом по соотношению длины плеч и расчет центромерного индекса. Цитогенетический метод: Цитогенетический метод, основанный на изучении количества и структуры хромосом в норме и при патологии. Кариотип — диплоидный набор хромосом,характеризующийся их числом, величиной и формой. Методы дифференциальной окраски хромосом позволяют выявить структурную организацию, которая выражается в поперечной исчерченности. Наиболее частый метод — метод с окраской хромосом красителем Гимза. Препараты хромосом окрашиваются трипсином, который удаляет белки, затем наносят краситель Гимза и появляется характерный для каждой из хромосом рисунок из светлых и темных пигментов. В 1960 г. была разработана первая Международная крассификация хромосом человека (Денверская). В основу ее были положены особенности величины хромосом и расположение первичной перетяжки. В 1971 г.Парижская классификация. Для изучения хромосом применяли флюоресцентные красители. При это хромосомы дают неравномерное свечение. Темные участки- гетерохроматин; светлые участки – эухроматин. Каждая хромосома человека содержит свойственную только ей последовательность полос, что позволяет идентифицировать каждую хромосому. В зависимости от места расположения центромеры хромосомы делят на
70.Роль близнецового метода в исследовании наследственности и среды в формировании признаков. Виды близнецов. Проблема предрасположенности к заболеванию. Факторы риска. Генеалогический метод (анализ родословного древа). Критерии определения типа наследования. Близнецовый метод используется в генетике для того, чтобы оценить степень влияния наследственности и среды на развитие какого-либо нормального или патологического признака. Монозигодные близнецы развиваются из разъеденившихся бластомеров одной оплодотворенной яйцеклетки и имеют одинаковый генотип, как правило всегда одного пола. Дизиготные близнецы развиваются из двух одновременно созревших и оплодотворенных яйцеклеток, могут быть однополые и разнополые. В первый период применения этого метода проводили сравнение близнецов по внешним морфологическим признакам. Если изучаемый признак проявляется у обоих близнецов, их называют конкордантными. (Конкордантность – это процент сходства по изучаемому признаку). Отсутствие признака у одного из близнецов - дискордантность. Генеалогический метод: Метод основан на прослеживании какого либо нормального или патологического признака в ряде поколений с указанием родственных связей между членами родословной. Составление родословной человека. Пробанд – лицо, родословную которого необходимо составить. Сибсы – братья и сестры пробанда. У людей известны следующие основные типы наследования: 1) аутосомно-доминантное наследование; признак проявляется в первом поколении как в гомозиготном так и в гетерозиготном состоянии. 2) аутосомно-рецессивное наследование; признак проявляющийся в первом поколении только в гомозиготном состоянии по рецессиве. 3) доминантное сцепленное с Х-хромосомой наследование; проявляется как в гомозиготном, так и в рецессивном состоянии 4) рецессивное сцепленное с Х-хромосомой наследование; у мужчин проявляется как в гомо- так и в гетерозиготном состоянии (т.к. одна Х-хромосома), у женщин только в гомозиготном состоянии по рецессиве. 5) сцепленное с Y-хромосомой, или голандрическое, наследование; передается от отца к сыну ( гипертрихоз). 6) частично сцепленное с полом наследование: аллели изучаемого гена находятся в гомологичных друг другу участках Х-хромосомы и Y-хромосомы; 7) цитоплазматическое наследование: изучаемые гены находятся в ДНК митохондрий; 8) аутосомное наследование, зависимое от пола: аутосомные гены по-разному проявляются в фенотипе у женщин и мужчин; 9) аутосомное наследование, ограниченное полом: изучаемый признак формируется только у особей одного пола. 71.Характеристика методов пренатальной диагностики. Критерии определения типа наследования генеалогическим методом. Биохимические методы. Понятие о скрининг-программах. Пренатальная диагностика — дородовая диагностика, с целью обнаружения патологии на стадии внутриутробного развития. Позволяет обнаружить более 90 % плодов с синдромом Дауна (трисомия 21); трисомии 18 (известной как синдром Эдвардса) около 97 %, более 40 % нарушений развития сердца и др. В случае наличия у плода болезни родители при помощи врача-консультанта тщательно взвешивают возможности современной медицины и свои собственные в плане реабилитации ребенка. В результате семья принимает решение о судьбе данного ребенка и решает вопрос о продолжении вынашивания или о прерывании беременности. К пренатальной диагностике относится и определение отцовства на ранних сроках беременности, а также определение пола ребенка. Методы пренатальной диагностики
В случае обнаружения наследственного характера признака необходимо установить тип наследования: доминантный, рецессивный или сцепленный с полом. 1.Аутосомно-доминантный: проявление признака в равной мере у представителей обоих полов, наличие больных во всех поколениях (по вертикали). У гетерозиготного родителя вероятность рождения 50%. 2.Аутосомно-рецессивный: относительно небольшое число больных в родословной, наличие больных «по горизонали». Родители ребенка фенотипически часто здоровы, но являются гетерозигтными носителями рецессивного гена. Вероятность рождения 25%. 3.Сцепленные с полом: при доминантном заболевание одинаково проявляется как у мужчин, так и у женщин. В этом случае женщина может передать признак половине дочерей и половине сыновей. Мужчина передает этот ген с Х-хромосомой всем очерям. (Рахит). При рецессивном наследовании заболевания страдают мужчины. Гетерозиготная носительница мать передает мутантный ген половине сыновей (которые будут больны) и половине дочерей, которые фенотипически будут здоровы. (Дальтонизм, гемофилия). Биохимический метод : Основан на изучении характера биохимических реакций в организме, обмена веществ для установления носительства аномального гена или уточнения диагноза. Заболевания, в основе которых лежит нарушение обмена веществ, составляют значительную часть генной наследственной патологии. К ним относятся сахарный диабет, фенилкетонурия (нарушение обмена фенилаланина), галактоземия (нарушение усвоения молочного сахара) и другие. Этот метод позволяет установить болезнь на ранней стадии и лечить ее. Скри́нинг в медицине (англ. screening просеивание) — метод активного выявления лиц с какой-либо патологией илифакторами риска ее развития, основанный на применении специальных диагностических исследований,включая тестирование, в процессе массового обследования населения или его отдельных контингентов. С.осуществляют с целью ранней диагностики заболевания или предрасположенности к нему, что необходимодля оказания своевременной лечебно-профилактической помощи. 72.Болезни с нетрадиционным наследованием. Митохондриальные болезни. Наследование невропатии Лебера. Цитоплазматическая наследственность — внеядерная, нехромосомная, плазматическая наследственность. Передача наследстенной информации через цитоплазму. Полигенный тип наследования – это такой тип наследования, который контролируется несколькими парами неаллельных генов, т.е. один признак – несколько генов. Некоторые признаки могут наследоваться без участия ядерного аппарата. Такое явление возможно благодаря тому, что некоторые клеточные структуры имеют свою автономную кольцевую ДНК. У эукариот нехромосомная ДНК находится в хлоропластах и митохондриях. Молекулы ДНК этих органелл несут информацию о собственных белках. Болезни, связанные с цитоплазматической наследственностью, связаны обычно с органоидами клетки. Например, митохондриальные заболевания — группа заболеваний, связанных с дефектами митохондрий. (синдром Барта, синдром Кернса-Сейра, синдром Пирсона). Зрительная нейропатия Лебера связана с точковыми мутациями в митоходнриальных ДНК(замена аминокислоты) . 73.Генетический полиморфизм человечества: масштабы, факторы формирования. Медико-биологическое и социальные аспекты генетического многообразия человечества. Генетический и мутационный груз и их биологическая сущность. Полиморфизм (многоформность) - любое разнообразие форм одного и того же вида организмов. Полиморфизм является наиболее универсальным явлением жизни. Дж. Б.С. Холдейн назвал человека самым полиморфным видом на Земле. У человека полиморфны практически все признаки (цвет глаз, волос, форма носа и черепа, группа крови и т.д.). Полиморфизм может быть результатом как дискретной внутрипопуляционной изменчивости наследственного характера, так и может определяться нормой реакции. Генетический полиморфизм возникает благодаря закреплению в популяции разных мутаций. Поэтому его классифицируют на: генный, хромосомный и геномный. Генный полиморфизм обусловлен наличием двух или более аллелей. Например, способность людей ощущать вкус фенилтиомочевины определяется доминантным аллелем (ТТ, Тt), рецессивные гомозиготы (tt) – его не ощущают. Наследование групп крови определяют три аллели - А, В, О. Хромосомный полиморфизм связан с хромосомными аберрациями, а геномный - с изменением наборов хромосом в кариотипе (гетероплоидия). Полиморфные генетические системы по их предполагаемой природе включают в себя три группы полиморфизмов: транзиторный, нейтральный, балансированный. Транзиторный полиморфизм объясняется сменой генетического состава популяции по рассматриваемому локусу. Один новый аллель в изменившихся условиях среды становится более выгодным и заменяет "исходный". Такой полиморфизм не может быть стабильным потому, что благодаря естественному отбору рано или поздно "исходный" аллель будет вытеснен новым и популяция будет мономорфной по "новому" аллелю. Скорость такого процесса нельзя заметить на протяжении жизни одного поколения. При нейтральном полиморфизме из-за случайных стохастических процессов (дрейф генов, эффект основателя) происходит случайное изменение частот аллелей. Например, возникновения различий в адаптивно-индифферентных признаках (приросшая или свободная мочка уха). Изменения генных частот по этим признакам осуществляется по механизму дрейфа генов, чем и объясняется нейтральный тип их эволюции. Балансированный полиморфизм - это полиморфизм, обусловленный сложным балансом между отбором против обеих гомозигот в пользу гетерозиготы. Рецессивный генотип подвергается более сильной элиминации, чем доминантный. Различия в скорости элиминации двух этих генотипов поддерживают постоянное, стабильное равновесное существование в популяции обеих аллелей с собственной для каждого частотой. Этим и объясняется стабильность такого полиморфизма. Наиболее полно изучены системы сбалансированного полиморфизма, связанные с отбором по малярии - аномальных гемоглобинов, талассемии, недостаточности эритроцитарного фермента глюкозо-6-фосфатдегидрогеназы. Стабильность этих полиморфизмов исчезает в связи с успехами борьбы с малярией. Балансированный полиморфизм превращается в транзиторный. Однако для снижения генных частот теперь уже полностью патологических генов, поскольку нет нужды в защите от малярии, должно пройти несколько десятков поколений. Большое число открытых к настоящему времени полиморфных систем у человека со значительным числом аллелей приводит к тому, что практически каждый человек обладает уникальным набором генов, что позволяет говорить о биохимической и иммунологической индивидуальности личности. Это имеет большое значение в медицинской практике, особенно в судебной экспертизе. Обычно наследственная предрасположенность носит мультифакториальный характер и определяется множеством генов с преобладающим эффектом одного или нескольких генов. Для установления этих генов пользуются биохимическими и иммунологическими методами антропогенетики. В настоящее время описано более 130 полиморфных генных локусов, кодирующих полиморфные белки. Это белки-ферменты, антигены, транспортные белки и т.д. Высказываются суждения, что около одной трети структурных генов человека должны иметь множественные аллели, т.е. кодировать полиморфные продукты метаболизма. В таком большом выборе для генетической рекомбинации заложена возможность возникновения индивидов с неблагоприятными сочетаниями генов, определяющих наследственную предрасположенность к заболеваниям. Учитывая генетический полиморфизм, для конкретного определения генетического фактора предрасположения к болезни сравнивают частоту встречаемости тех или иных полиморфных белков (антигенов) при данной болезни и в контрольной группе здоровых людей. Имеются многочисленные сведения по ассоциациям болезней с иммунологическими маркерами - антигенами групп крови АВО, системы HLA, с гаптоглобинами крови и с секретором. В частности, установлена предрасположенность людей со 2 группой (А) крови к раку желудка, толстой кишки, яичника, шейки матки, ревматизму, ишемической болезни сердца, тромбоэмболиями и т.д. Люди с 1 группой крови (О) предрасположены к заболеваниям язвенной болезни желудка и 12-перстной кишки и т.д. Генетический груз в популяциях людей – это совокупность патологических генов в популяции людей. (весь груз наслед.информ, который находится у нас в рецессиве). Генетический груз – часть наследственной изменчивости популяции, определяющая появление менее приспособленных особей, подвергающихся избирательной гибели в результате естественного отбора. Мутационный груз (син. мутационная нагрузка) снижение средней приспособленности популяции за счет непрерывного возникновения мутаций, снижающихжизнеспособность особей. 74.Генная инженерия. Программа «геном человека». Алгоритм генной инженерии. Понятие о генетических векторах. Генная терапия. Генная инженерия – область молекулярной биологии и генетики, главной задачей которых является создание организмов с новой генетической программой. Геном человека- международный проект, начатый в 1988 г. Основная цель проекта – выяснить последовательность нуклеотидных оснований во всех молекулах ДНК человека и установить локализацию, т.е. полностью картировать все гены человека. К 1998 г. установлены последовательности нуклеотидов в 30 261 гене человека, т.е. расшифрована примерно половина генетической информация человека. Вектор (в генетике) — молекула нуклеиновой кислоты, чаще всего ДНК, используемая в генетической инженерии для передачи генетического материала другой клетке. Генная терапия — это введение нуклеиновых кислот в ткань для предотвращения, подавления или обратного развития патологического процесса. 75.Цели и задачи программы «Геном человека». Тканевая и генная инженерия. Стволовые клетки и проблема клонирования особей и тканей. Принципы методики. Геном человека- международный проект, начатый в 1988 г. Основная цель проекта – выяснить последовательность нуклеотидных оснований во всех молекулах ДНК человека и установить локализацию, т.е. полностью картировать все гены человека. Задачи: определить последовательность нуклеотидов ДНК всего генома человека. К 1998 г. установлены последовательности нуклеотидов в 30 261 гене человека, т.е. расшифрована примерно половина генетической информация человека. Тканевая инженерия — создание новых тканей и органов для терапевтической реконструкции поврежденного органа. Генная инженерия – область молекулярной биологии и генетики, главной задачей которых является создание организмов с новой генетической программой. Стволовая клетка – это незрелая клетка, способная к самообновлению и развитию в специализированные клетки организма. |