Главная страница
Навигация по странице:

  • Хрящевые ткани

  • 2. Дыхательная система. Морфофункциональная характеристика. Развитие. Респираторные и нереспираторные функции. Воздухоносные пути: строение и функции (трахея и бронхи различного калибра).

  • Респираторный отдел

  • Воздухоносные пути

  • З. В препарате яйцеклетка человека.

  • 2. Легкие. Морфофункциональная характеристика. Развитие. Строение воздухоносных и респираторных отделов. Аэрогематический барьер.

  • З. При гетеротрансплантации органа обнаружено отторжение трансплантанта.

  • Анатомия ответы на экзамен. 1. Определение клетки. Плазмолемма строение, химический состав, функции. Структурнофункциональная характеристика различных видов межклеточных соединений


    Скачать 180.49 Kb.
    Название1. Определение клетки. Плазмолемма строение, химический состав, функции. Структурнофункциональная характеристика различных видов межклеточных соединений
    АнкорАнатомия ответы на экзамен
    Дата22.01.2021
    Размер180.49 Kb.
    Формат файлаdocx
    Имя файлаekzamen_otvety.docx
    ТипДокументы
    #170480
    страница6 из 11
    1   2   3   4   5   6   7   8   9   10   11

    Билет№15

    1. Морфофункциональная характеристика и классификация хрящевых тканей. Их развитие, строение и функции. Рост хряща, его регенерация, возрастные изменения.
    Хрящевые ткани

    Хрящевая ткань состоит из клеток — хондроцитов и хондробластов, а также из плотного межклеточного вещества. Хондробласты располагаются одиночно по периферии хряще

    вой ткани. Представляют собой вытянутые уплощенные клетки с базофильной цитоплазмой, содержащей хорошо развитую зернистую ЭПС и пластинчатый комплекс. Эти клетки синтезируют

    компоненты межклеточного вещества, выделяют их в межклеточную среду, постепенно дифференцируются в дефинитивные клетки хрящевой ткани — хондроциты. Хондробласты обладают способностью митотического деления. В надхрящнице, окружающей хрящевую ткань, содержатся неактивные, малодифференцированные формы хондробластов, которые при определенных условиях дифференцируются в хондробласты, синтезирующие межклеточное вещество, а затем и в хондроциты.
    Аморфное вещество содержит значительное количество минеральных веществ, не образующих кристаллы, воду, плотную волокнистую ткань. Сосуды в хрящевой ткани в норме отсутствуют.
    В зависимости от строения межклеточного вещества хрящевые ткани подразделяются на гиалиновую, эластическую и волокнистую хрящевую ткань.
    В организме человека гиалиновая хрящевая ткань широко распространена и входит в состав крупных хрящей гортани (щитовидного и перстневидного), трахеи, хрящевой части ребер.

    Эластическая хрящевая ткань характеризуется нахождением в клеточном веществе как коллагеновых, так и эластических волокон (хрящевая ткань ушной раковины и хрящевой части на

    ружного слухового прохода, хрящей наружного носа, мелких хрящей гортани и средних бронхов).

    Волокнистая хрящевая ткань характеризуется содержанием в межклеточном веществе мощных пучков из параллельно расположенных коллагеновых волокон. При этом хондроциты располагаются между пучками волокон в виде цепочек. По физическим свойствам характеризуется высокой прочностью. В организме встречается лишь в ограниченных местах: составляет часть межпозвоночных дисков (фиброзное кольцо), а также локализуется в местах прикрепления связок и сухожилий к гиалиновым хрящам. В этих случаях четко прослеживается постепенный переход фиброцитов соединительной ткани в хондроциты хрящевой ткани.
    Трофика гиалиновой хрящевой ткани суставных поверхностей обеспечивается синовиальной жидкостью суставов, а также жидкостью из сосудов костной ткани. Развитие хрящевой ткани и хрящей (хондрогистогенез) осуществляется из мезенхимы.
    2. Дыхательная система. Морфофункциональная характеристика. Развитие. Респираторные и нереспираторные функции. Воздухоносные пути: строение и функции (трахея и бронхи различного калибра).
    Дыхательная система — это совокупность органов, обеспечивающих в организме внешнее дыхание, а также ряд важных недыхательных функций.

    В состав дыхательной системы входят различные органы, выполняющие

    воздухопроводящую и дыхательную (газообменную) функции: полость носа, носоглотка, гортань, трахея, внелегочные бронхи и легкие.

    Функции. Внешнее дыхание, т. е. поглощение из вдыхаемого воздуха кисло­рода и снабжение им крови, а также удаление из организма углекислого газа, является основной функцией дыхательной системы. Среди недыхательных функций дыхательной системы очень важными являются терморегуляция и увлажнение вдыхаемого возду­ха, депонирование крови в обильно развитой сосудистой системе, участие в регуляции свертывания крови, участие в синтезе некоторых гормонов, в водно-солевом и липидном обмене, а также в голосообразовани и обонянии и иммунной защите.
    Респираторный отдел..

    Структурнофункциональной единицей респираторного отдела легкого является ацинус. Он представляет собой систему альвеол, расположенных в стенке респиратор

    ной бронхиолы, альвеолярных ходов и мешочков, которые осуществляют газообмен между кровью и воздухом альвеол. Ацинус начинается респираторной бронхиолой I порядка, которая

    дихотомически делится на респираторные бронхиолы II, а затем III порядка. В просвет бронхиол открываются альвеолы, которые в связи с этим носят название альвеолярных. Каждая респиратор ная бронхиола III порядка, в свою очередь, подразделяется на альвеолярные ходы, а каждый альвеолярный ход заканчивается двумя альвеолярными мешочками. В устье альвеол альвеолярных ходов имеются небольшие пучки гладких мышечных клеток, которые на поперечных срезах видны в виде пуговчатых утолщений. Ацинусы отделены друг от друга тонкими соединительнотканными прослойками, 12—18 ацинусов образуют легочную дольку. Респираторные бронхиолы выстланы однослойным кубическим эпителием. Мышечная пластинка истончается и распадается на отдельные, циркулярно направленные пучки гладких мышечных

    клеток.
    Воздухоносные пути

    К воздухоносным путям дыхательной системы относят носовую полость, носоглотку, гортань, трахею и бронхи. При продвижении воздуха происходит его очищение, увлажнение, приближение температуры вдыхаемого воздуха к температуре тела,рецепция газовых, температурных и механических раздражителей, а также регуляция объема вдыхаемого воздуха.

    Кроме этого, гортань принимает участие в звукообразовании
    Трахея

    Это воздухопроводящий орган дыхательной системы, представляющий собой полую трубку, состоящую из слизистой оболочки, подслизистой основы, волокнистохрящевой и адвенти

    циальной оболочек.Слизистая оболочка при помощи тонкой подслизистой основы связана с подлежащими плотными частями трахеи и благодаря этому не образует складок. Она выстлана многорядным призматическим реснитчатым эпителием, в котором различают реснитчатые, бокаловидные, эндокринные и базальные клетки.
    З. В препарате яйцеклетка человека.

    1. Назвать яйцеклетку человека по количеству и распределению желтка.

    2. Перечислить ее оболочки.

    3. Функции этих оболочек.
    1.Вторичная олиголецитальная изолецитальная яйцеклетка.

    2.Лучистый венец и прозрачная (блестящая) оболочка.

    3.Лучистый венец - защитная, трофическая. Прозрачная оболочка – защитная.

    Билет16

    1. Морфофункциональная характеристика и классификация мышечных тканей. Исчерченная скелетная мышечная ткань: источник развития, строение, иннервация. Структурные основы сокращения мышечного волокна. Регенерация.

    Свойством сократимости обладают практически все виды клеток благодаря наличию в их цитоплазме сократительного аппарата, представленного сетью тонких микрофиламентов (5—7нм), состоящих из сократительных белков актина, миозина,тропомиозина. За счет взаимодействия названных белков микрофиламентов осуществляются сократительные процессы и обеспечивается движение в цитоплазме гиалоплазмы, органелл, вакуолей, образование псевдоподий и инвагинаций плазмолеммы,а также процессы фаго и пиноцитоза, экзоцитоза, деления и перемещения клеток. Содержание сократительных элементов (а следовательно, и сократительные процессы) неодинаково выражены в различных типах клеток. Наиболее выражены сократительные структуры в клетках, основной функцией которых является

    сокращение. Такие клетки или их производные образуют мышечные ткани, которые обеспечивают сократительные процессы в полых внутренних органах и сосудах, перемещение частей тела относительно друг друга, поддержание позы и перемещение организма в пространстве. Помимо движения, при сокращении выделяется большое количество тепла, а следовательно, мышечные ткани участвуют в терморегуляции организма.
    Мышечные ткани неодинаковы по строению, источникам происхождения и иннервации, функциональным особенностям. Любая разновидность мышечной ткани, помимо сократительных элементов (мышечных клеток и мышечных волокон), включает в себя клеточные элементы и волокна рыхлой волокнистой соединительной ткани и сосуды, которые обеспечивают

    трофику и осуществляют передачу усилий сокращения мышечных элементов. Мышечная ткань подразделяется по строению на гладкую (неисчерченную) и поперечнополосатую (исчерченную). Каждая из двух групп, в свою очередь, подразделяется на виды по источникам происхождения, строению и функциональным особенностям.

    Поперечнополосатая скелетная мышечная ткань

    Как уже отмечалось, структурнофункциональной единицей этой ткани является мышечное волокно. Оно представляет собой вытянутое цилиндрическое образование с заостренными концами длиной от 1 до 40 мм (а по некоторым данным — до 120 мм), диаметром 0,1 мм. Мышечное волокно окружено оболочкой сарколеммой, в которой под электронным микроскопом отчетливо выделяются два листка: внутренний листок является типичной плазмолеммой, а наружный представляет собой тонкую соединительнотканную пластинку (базальную пластинку). Основным структурным компонентом мышечного волокна

    является миосимпласт. Таким образом, мышечное волокно является комплексным образованием и состоит из следующих основныхструктурных компонентов:

    1) миосимпласта;

    2) клеток миосателлитов;

    3) базальной пластинки.
    Базальная пластинка образована тонкими коллагеновыми и ретикулярными волокнами, относится к опорному аппарату и выполняет вспомогательную функцию передачи сил сокращения на соединительноканные элементы мышцы.

    Клетки:миосателлиты являются ростковыми элементами мышечных волокон, играющими важную роль в процессах физиологической и репаративной регенерации.

    Миосимпласт является основным структурным компонентом мышечного волокна как по объему, так и по выполняемым функциям. Он образуется посредством слияния самостоятельных недифференцированных мышечных клеток — миобластов.
    Регенерация скелетной мышечной ткани

    В мышечной, как и в других тканях, различают два вида регенерации физиологическую и репаративную. Физиологическая регенерация проявляется в форме гипертрофии мышечных волокон.Это выражается в увеличении их толщины и длины, нарастании числа органелл, главным образом миофибрилл, числа ядер, что проявляется усилением функциональной способности мышечного волокна

    Репаративная регенерация развивается после повреждения мышечных волокон. При этом способе регенерация зависит от величины дефекта. При значительном повреждении на протяжении мышечного волокна миосателлиты в области повреждения и в прилегающих участках растормаживаются, усиленно пролиферируют, а затем мигрируют в область дефекта мышечного волокна, где встраиваются в цепочки, формируя микротрубочку.
    Иннервация скелетных мышц

    Скелетные мышцы получают двигательную, чувствительную и трофическую (вегетативную) иннервацию. Двигательную (эфферентную) иннервацию скелетные мышцы туловища и конечностей получают от мотонейронов передних рогов спинного мозга, а мышцы лица и головы — от двигательных нейронов определенных черепных нервов.
    Механизмы сокращения мышечного волокна

    В покоящихся мы­шечных волокнах при отсутствии импульсации мотонейрона по­перечные миозиновые мостики не прикреплены к актиновым миофиламентам. Тропомиозин расположен таким образом, что бло­кирует участки актина, способные взаимодействовать с попере­чными мостиками миозина. Тропонин тормозит миозин — АТФ-азную активность и поэтому АТФ не расщепляется. Мышечные волокна находятся в расслабленном состоянии.
    При сокращении мышцы длина А-дисков не меняется, J-диски укорачиваются, а Н-зона А-дисков может исчезать. Эти данные явились основой для создания теории, объясняющей сокра­щение мышцы механизмом скольжения (теорией скольжения) тон­ких актиновых миофиламентов вдоль толстых миозиновых. В ре­зультате этого миозиновые миофиламенты втягиваются между окру­жающими их актиновыми. Это приводит к укорочению каждого саркомера, а значит, и всего мышечного волокна.
    2. Легкие. Морфофункциональная характеристика. Развитие. Строение воздухоносных и респираторных отделов. Аэрогематический барьер.

    Легкие

    Легкие представляют собой парные органы, занимающие большую часть грудной клетки и постоянно изменяющие свою форму в зависимости от фазы дыхания. Поверхность легкого покрыта серозной оболочкой (висцеральной плеврой).

    Строение. Легкое состоит из разветвлений бронхов, входящих в состав воздухоносных путей (бронхиального дерева), и системылегочных пузырьков (альвеол), выполняющих роль респираторных отделов дыхательной системы.В состав бронхиального дерева легкого входят главные бронхи (правое и левое), которые делятся на внелегочные долевые бронхи (крупные бронхи I порядка), а затем на крупные зональные внелегочные (по 4 в каждом легком) бронхи (бронхи II порядка). Внутрилегочные бронхи сегментарные (по 10 в каждом легком) подразделяются на бронхи III—V порядков (субсегментарные), которые по своему диаметру относятся к средним (2—5 мм). Средние бронхи подразделяются на мелкие (1—2 мм в диаметре) бронхи и конечные бронхиолы. За ними начинаются респираторные отделы легкого, выполняющие газообменную функцию.

    Респираторный отдел. Структурнофункциональной единицей респираторного отдела легкого является ацинус. Он представляет собой систему альвеол, расположенных в стенке респиратор

    ной бронхиолы, альвеолярных ходов и мешочков, которые осуществляют газообмен между кровью и воздухом альвеол. Ацинус начинается респираторной бронхиолой I порядка, которая

    дихотомически делится на респираторные бронхиолы II, а затемIII порядка. В просвет бронхиол открываются альвеолы, которые в связи с этим носят название альвеолярных. Каждая респираторная бронхиола III порядка, в свою очередь, подразделяется на альвеолярные ходы, а каждый альвеолярный ход заканчивается двумя альвеолярными мешочками. В устье альвеол альвеолярных ходов имеются небольшие пучки гладких мышечных клеток, которые на поперечных срезах видны в виде пуговчатых утолщений. Ацинусы отделены друг от друга тонкими соединительнотканными прослойками, 12—18 ацинусов образуют легочную дольку.

    Респираторные бронхиолы выстланы однослойным кубическим эпителием. Мышечная пластинка истончается и распадается на отдельные, циркулярно направленные пучки гладких мышечных

    клеток. На стенках альвеолярных ходов и альвеолярных мешочков располагается несколько десятков альвеол. Общее количество их у взрослых людей достигает в среднем 300—400 млн. Поверхность всех альвеол при максимальном вдохе у взрослого человека может достигать 100 м2, а при выдохе она уменьшается в 2—2,5 раза. Между альвеолами лежат тонкие соединительнотканные перегородки, по которым проходят кровеносные капилляры.

    Воздухоносные пути

    К воздухоносным путям дыхательной системы относят носовую полость, носоглотку, гортань, трахею и бронхи. При продвижении воздуха происходит его очищение, увлажнение, приближение температуры вдыхаемого воздуха к температуре тела, рецепция газовых, температурных и механических раздражителей, а также регуляция объема вдыхаемого воздуха.

    Кроме этого, гортань принимает участие в звукообразовании.

    Важным компонентом аэрогематического барьера является сурфактантный альвеолярный комплекс. Он играет важную роль в предотвращении спадения альвеол на выдохе, а также в предохранении их от проникновения через стенку альвеол микроорганизмов из вдыхаемого воздуха и транссудации жидкости из капилляров межальвеолярных перегородок в альвеолы. Сурфактант состоит из двух фаз: мембранной и жидкой (гипофазы). Биохимический анализ сурфактанта показал, что в его состав входят фосфолипиды, белки и гликопротеиды.
    Сурфактант — компонент защитной системы легких. Сурфактант предотвращает непосредственный контакт альвеолоцитов с вредными частицами и инфекционными агентами, попадающими в альвеолы с вдыхаемым воздухом. Циклические изменения поверхностного натяжения, происходящие при вдохе и выдохе,обеспечивают зависимый от дыхания механизм очистки. Обволакиваемые сурфактантом пылевые частицы транспортируются из альвеол в бронхиальную систему, из которой они удаляются со слизью.Сурфактант регулирует количество макрофагов, мигрирующих в альвеолы из межальвеолярных перегородок, стимулируя

    активность этих клеток. Бактерии, проникающие в альвеолы с воздухом, опсонизируются сурфактантом, что облегчает их фагоцитоз альвеолярными макрофагами. Сурфактант присутствует в бронхиальном секрете, покрывая реснитчатые клетки, и имеет тот же химический состав, что и сурфактант легких. Очевидно, сурфактант необходим для стабилизации дистальных воздухоносных путей.
    З. При гетеротрансплантации органа обнаружено отторжение трансплантанта.

    1.Какие клетки крови обеспечивают этот процесс?

    2.В каком иммунитете участвуют эти клетки?

    3.К каким форменным элементам крови относится данный вид клеток?
    1. Т- лимфоциты «киллеры».

    2. В клеточном иммунитете.

    3. К лейкоцитам

    Билет№17

    1. Морфофункциональная характеристика нервной ткани. Источники развития. Нервные волокна: определение, строение и функциональные особенности миелиновых и безмиелиновых нервных волокон. Регенерация нервных волокон.
    Структурнофункциональные особенности нервной ткани:

    1) состоит из двух основных типов клеток — нейроцитов

    и нейроглии;

    2) межклеточное вещество отсутствует;

    3) нервная ткань не подразделяется на морфологические под

    группы;

    4) основной источник происхождения — нейроэктодерма.

    Структурные компоненты нервной ткани:

    1) нервные клетки (нейроциты или нейроны);

    2) глиальные клетки — глиоциты.

    Функции нервной ткани:

    1) восприятие различных раздражений и трансформация их

    в нервные импульсы;

    2) проведение нервных импульсов, их обработка и передачана рабочие органы.

    Источники и этапы развития нервной ткани

    Основной источник — нейроэктодерма. Некоторые клетки глиальные клетки развиваются из микроглии и из мезенхимы(из моноцитов крови).

    Этапы развития:

    1) нервная пластинка;

    2) нервный желобок;

    3) нервная трубка, ганглиозная пластинка, нейральные пла

    коды.

    Из нервной трубки развивается нервная ткань, в основном из органов центральной нервной системы (спинного и головного мозга). Из ганглиозной пластинки развивается нервная ткань не

    которых органов периферической нервной системы (вегетативных и спинальных ганглиев). Из нейральных плакод развиваются ганглии черепных нервов. В процессе развития нервной ткани

    вначале образуются два типа клеток:

    1) нейробласты;

    2) глиобласты.

    Затем из нейробластов дифференцируются различные типы нейроцитов, а из глиобластов — различные типы клеток макроглии (эпендимоциты, астроциты, олигодендроциты).
    Нервные волокна

    Нервные волокна являются не самостоятельными структурными элементами нервной ткани, а представляют собой комплексные образования, включающие следующие элементы:

    1) отростки нервных клеток (осевые цилиндры);

    2) глиальные клетки (леммоциты, или шванновские клетки);

    3) соединительнотканную пластинку (вязальную плас

    тинку).

    Главной функцией нервных волокон является проведение нервных импульсов. При этом отростки нервных клеток (осевые цилиндры) проводят нервные импульсы, а глиальные клетки

    (леммоциты) способствуют этому проведению.
    По особенностям строения и функции нервные волокна подразделяются на две разновидности:

    1) безмиелиновые;

    2) миелиновые.

    Строение и функциональные особенности безмиелинового нервного волокна. Безмиелиновое нервное волокно представляет собой цепь леммоцитов, в которую вдавлено несколько (5—20) осевых цилиндров. Каждый осевой цилиндр прогибает цитолемму леммоцита и как бы погружается в его цитоплазму. При этом осевой цилиндр окружен цитолеммой леммоцита, а ее

    сближенные участки составляют мезаксон. Мезаксон в безмиелиновых нервных волокнах не играет существенной функциональной роли, но является важным структурным и функциональным образованием в миелиновом нервном волокне. По своему строению безмиелиновые нервные волокна относятся к волокнам кабельного типа. Несмотря на это, они тонкие (5—7 мкм) и проводят нервные импульсы очень медленно (1—2 м/с).

    Строение миелинового нервного волокна. Миелиновое нервное волокно имеет те же структурные компоненты, что и безмиелиновое, но отличается рядом особенностей:

    1) осевой цилиндр один и погружается в центральную часть цепи леммоцита;

    2) мезаксон длинный и закручен вокруг осевого цилиндра, образуя миелиновый слой;

    3) цитоплазма и ядро леммоцитов сдвигаются на периферию и составляют нейролемму миелинового нервного волокна;

    4) на периферии расположена базальная пластинка. На поперечном сечении миелинового нервного волокна видны следующие структурные элементы:

    1) осевой цилиндр;

    2) миелиновый слой;

    3) неврилемма;

    4) базальная пластинка.
    По ходу миелинового нервного волокна видны границы соседних леммоцитов — узловые перехваты (перехваты Ранвье),
    Полноценной регенерации нервных волокон в центральной нервной системе обычно не происходит, но нервные волокна в составе периферических нервов обычно хорошо регенерируют.
    1   2   3   4   5   6   7   8   9   10   11


    написать администратору сайта