Главная страница

Систем_подход. 1 Понятия модели и моделирования


Скачать 70.59 Kb.
Название1 Понятия модели и моделирования
Дата26.09.2022
Размер70.59 Kb.
Формат файлаdocx
Имя файлаСистем_подход.docx
ТипИсследование
#698296
страница1 из 6
  1   2   3   4   5   6

1.1.1. Понятия модели и моделирования


Моделирование можно рассматривать как замещение исследуемого объекта (оригинала) его условным образом, описанием или другим объектом, именуемым моделью и обеспечивающим близкое к оригиналу поведение в рамках некоторых допущений и приемлемых погрешностей. Моделирование обычно выполняется с целью познания свойств оригинала путем исследования его модели, а не самого объекта. Разумеется, моделирование оправдано в том случае когда оно проще создания самого оригинала или когда последний по каким-то причинам лучше вообще не создавать.

Под моделью понимается физический или абстрактный объект, свойства которого в определенном смысле сходны со свойствами исследуемого объекта. При этом требования к модели определяются решаемой задачей и имеющимися средствами [19]. Существует ряд общих требований к моделям:

  1. Адекватность – достаточно точное отображение свойств объекта;

  2. Полнота – предоставление получателю всей необходимой информации об объекте;

  3. Гибкость – возможность воспроизведения различных ситуаций во всем диапазоне изменения условий и параметров;

  4. Трудоемкость разработки должна быть приемлемой для имеющегося времени и программных средств.

Моделирование – это процесс построения модели объекта и исследования его свойств путем исследования модели.

Таким образом, моделирование предполагает 2 основных этапа:

  1. Разработка модели;

  2. Исследование модели и получение выводов.

При этом на каждом из этапов решаются разные задачи и используются отличающиеся по сути методы и средства.

На практике применяют различные методы моделирования. В зависимости от способа реализации, все модели можно разделить на два больших класса: физические и математические.

Математическое моделирование принято рассматривать как средство исследования процессов или явлений с помощью их математических моделей.

Под физическим моделированием понимается исследование объектов и явлений на физических моделях, когда изучаемый процесс воспроизводят с сохранением его физической природы или используют другое физическое явление, аналогичное изучаемому [10, 41]. При этом физические модели предполагают, как правило, реальное воплощение тех физических свойств оригинала, которые являются существенными в конкретной ситуации. Например, при проектировании нового самолета создается его макет, обладающий теми же аэродинамическими свойствами; при планировании застройки архитекторы изготавливают макет, отражающий пространственное расположение ее элементов. В связи с этим физическое моделирование называют также макетированием [10].

Полунатурное моделирование представляет собой исследование управляемых систем на моделирующих комплексах с включением в состав модели реальной аппаратуры [41]. Наряду с реальной аппаратурой в замкнутую модель входят имитаторы воздействий и помех, математические модели внешней среды и процессов, для которых неизвестно достаточно точное математическое описание. Включение реальной аппаратуры или реальных систем в контур моделирования сложных процессов позволяет уменьшить априорную неопределенность и исследовать процессы, для которых нет точного математического описания. С помощью полунатурного моделирования исследования выполняются с учетом малых постоянных времени и нелинейностей, присущих реальной аппаратуре. При исследовании моделей с включением реальной аппаратуры используется понятие динамического моделирования, при исследовании сложных систем и явлений - эволюционного, имитационного и кибернетического моделирования [10, 18, 41].

Очевидно, действительная польза от моделирования может быть получена только при соблюдении двух условий:

  1. Модель обеспечивает корректное (адекватное) отображение свойств оригинала, существенных с точки зрения исследуемой операции;

  2. Модель позволяет устранить перечисленные выше проблемы, присущие проведению исследований на реальных объектах.


1.1.2. Основные понятия математического моделирования


Решение практических задач математическими методами последовательно осуществляется путем формулировки задачи (разработки математической модели), выбора метода исследования полученной математической модели, анализа полученного математического результата. Математическая формулировка задачи обычно представляется в виде геометрических образов, функций, систем уравнений и т.п. Описание объекта (явления) может быть представлено с помощью непрерывной или дискретной, детерминированной или стохастической и другими математическими формами.

Теория математического моделирования обеспечивает выявление закономерностей протекания различных явлений окружающего мира или работы систем и устройств путем их математического описания и моделирования без проведения натурных испытаний. При этом используются положения и законы математики, описывающие моделируемые явления, системы или устройства на некотором уровне их идеализации.

Математическая модель (ММ) представляет собой формализованное описание системы (или операции) на некотором абстрактном языке, например, в виде совокупности математических соотношений или схемы алгоритма, т. е. такое математическое описание, которое обеспечивает имитацию работы систем или устройств на уровне, достаточно близком к их реальному поведению, получаемому при натурных испытаниях систем или устройств. Любая ММ описывает реальный объект, явление или процесс с некоторой степенью приближения к действительности. Вид ММ зависит как от природы реального объекта, так и от задач исследования.

Математическое моделирование общественных, экономических, биологических и физических явлений, объектов, систем и различных устройств является одним из важнейших средств познания природы и проектирования самых разнообразных систем и устройств. Известны примеры эффективного использования моделирования в создании ядерных технологий, авиационных и аэрокосмических систем, в прогнозе атмосферных и океанических явлений, погоды и т.д. [14]

Однако для таких серьезных сфер моделирования нередко нужны суперкомпьютеры и годы работы крупных коллективов ученых по подготовке данных для моделирования и его отладки. Тем не менее, и в этом случае математическое моделирование сложных систем и устройств не только экономит средства на проведение исследований и испытаний, но и может устранить экологические катастрофы – например, позволяет отказаться от испытаний ядерного и термоядерного оружия в пользу его математического моделирования или испытаний аэрокосмических систем перед их реальными полетами.

Между тем математическое моделирование на уровне решения более простых задач, например, из области механики, электротехники, электроники, радиотехники и многих других областей науки и техники в настоящее время стало доступным выполнять на современных ПК. А при использовании обобщенных моделей становится возможным моделирование и достаточно сложных систем, например, телекоммуникационных систем и сетей, радиолокационных или радионавигационных комплексов.

Целью математического моделирования является анализ реальных процессов (в природе или технике) математическими методами. В свою очередь, это требует формализации ММ процесса, подлежащего исследованию. Модель может представлять собой математическое выражение, содержащее переменные, поведение которых аналогично поведению реальной системы. Модель может включать элементы случайности, учитывающие вероятности возможных действий двух или большего числа «игроков», как, например, в теории игр; либо она может представлять реальные переменные параметры взаимосвязанных частей действующей системы.

Математическое моделирование для исследования характеристик систем можно разделить на аналитическое, имитационное и комбинированное. В свою очередь, ММ делятся на имитационные и аналитические.
  1   2   3   4   5   6


написать администратору сайта