Главная страница
Навигация по странице:

  • Первым этапом

  • Вторым этапом

  • размерностей

  • экстремальных ситуаций

  • математической замкнутости

  • Вычислительным экспериментом

  • Систем_подход. 1 Понятия модели и моделирования


    Скачать 70.59 Kb.
    Название1 Понятия модели и моделирования
    Дата26.09.2022
    Размер70.59 Kb.
    Формат файлаdocx
    Имя файлаСистем_подход.docx
    ТипИсследование
    #698296
    страница6 из 6
    1   2   3   4   5   6

    1.5. Основные этапы математического моделирования


    Первым этапом математического моделирования является постановка задачи, определение объекта и целей исследования, задание критериев (признаков) изучения объектов и управления ими. Неправильная или неполная постановка задачи может свести на нет результаты всех последующих этапов.

    Вторым этапом моделирования является выбор типа математической модели, что является важнейшим моментом, определяющим направление всего исследования. Обычно последовательно строится несколько моделей. Сравнение результатов их исследования с реальностью позволяет установить наилучшую из них. На этапе выбора типа математической модели при помощи анализа данных поискового эксперимента устанавливаются: линейность или нелинейность, динамичность или статичность, стационарность или нестационарность, а также степень детерминированности исследуемого объекта или процесса.

    Процесс выбора математической модели объекта заканчивается ее предварительным контролем, который также является первым шагом на пути к исследованию модели. При этом осуществляются следующие виды контроля (проверки): размерностей; порядков; характера зависимостей; экстремальных ситуаций; граничных условий; математической замкнутости; физического смысла; устойчивости модели [26].

    Контроль размерностей сводится к проверке выполнения правила, согласно которому приравниваться и складываться могут только величины одинаковой размерности.

    Контроль порядков величин направлен на упрощение модели. При этом определяются порядки складываемых величин и явно малозначительные слагаемые отбрасываются.

    Анализ характера зависимостей сводится к проверке направления и скорости изменения одних величин при изменении других. Направления и скорость, вытекающие из ММ, должны соответствовать физическому смыслу задачи.

    Анализ экстремальных ситуаций сводится к проверке наглядного смысла решения при приближении параметров модели к нулю или бесконечности.

    Контроль граничных условий состоит в том, что проверяется соответствие ММ граничным условиям, вытекающим из смысла задачи. При этом проверяется, действительно ли граничные условия поставлены и учтены при построении искомой функции и что эта функция на самом деле удовлетворяет таким условиям.

    Анализ математической замкнутости сводится к проверке того, что ММ дает однозначное решение.

    Анализ  физического смысла сводится к проверке физического содержания промежуточных соотношений, используемых при построении ММ.

    Проверка устойчивости модели состоит в проверке того, что варьирование исходных данных в рамках имеющихся данных о реальном объекте не приведет к существенному изменению решения.

     

    1.5.1. Понятие о вычислительном эксперименте


    В настоящее время основным способом исследования ММ и проверки ее качественных показателей служит вычислительный эксперимент.

    Вычислительным экспериментом называется методология и технология исследований, основанные на применении прикладной математики и ЭВМ как технической базы при использовании ММ. Вычислительный эксперимент основывается на создании ММ изучаемых объектов, которые формируются с помощью некоторой особой математической структуры, способной отражать свойства объекта, проявляемые им в различных экспериментальных условиях, и включает в себя следующие этапы [26].

    1.  Для исследуемого объекта строится модель, обычно сначала физическая, фиксирующая разделение всех действующих в рассматриваемом явлении факторов на главные и второстепенные, которые на данном этапе исследования отбрасываются; одновременно формулируются допущения и условия применимости модели, границы, в которых будут справедливы полученные результаты; модель записывается в математических, терминах, как правило, в виде дифференциальных или интегро-дифференциальных уравнений; создание ММ проводится специалистами, хорошо знающими данную область естествознания или техники, а также математиками, представляющими себе возможности решения математической задачи [37].

    2.  Разрабатывается метод решения сформулированной математической задачи. Эта задача представляется в виде совокупности алгебраических формул, по которым должны вестись вычисления и условия, показывающие последовательность применения этих формул; набор этих формул и условий носит название вычислительного алгоритма. Вычислительный эксперимент имеет многовариантный характер, так как решения поставленных задач часто зависят от многочисленных входных параметров. Тем не менее, каждый конкретный расчет в вычислительном эксперименте проводится при фиксированных значениях всех параметров. Между тем в результате такого эксперимента часто ставится задача определения оптимального набора параметров. Поэтому при создании оптимальной установки приходится проводить большое число расчетов однотипных вариантов задачи, отличающихся значением некоторых параметров. В связи с этим при организации вычислительного эксперимента можно использовать эффективные численные методы.

    3.   Разрабатываются алгоритм и программа решения задачи на ЭВМ. Программирование решений определяется теперь не только искусством и опытом исполнителя, а перерастает в самостоятельную науку со своими принципиальными подходами.

    4.   Проведение расчетов на ЭВМ. Результат получается в виде некоторой цифровой информации, которую далее необходимо будет расшифровать. Точность информации определяется при вычислительном эксперименте достоверностью модели, положенной в основу эксперимента, правильностью алгоритмов и программ (проводятся предварительные «тестовые» испытания).

    5.   Обработка результатов расчетов, их анализ и выводы [35]. На этом этапе могут возникнуть необходимость уточнения ММ (усложнения или, наоборот, упрощения), предложения по созданию упрощенных инженерных способов решения и формул, дающих возможности получить необходимую информацию более простым способом.

    Вычислительный эксперимент приобретает исключительное значение в тех случаях, когда натурные эксперименты и построение физической модели оказываются невозможными. Особенно ярко можно проиллюстрировать значение вычислительного эксперимента при исследовании влияния городской застройки на параметры распространения радиосигнала [17]. В связи с интенсивным развитием систем мобильной связи данная задача в настоящее время является особенно актуальной. С целью снижения затрат при частотно-территориальном планировании производится оптимизация частотно-территориального плана с учетом таких факторов как рельеф местности, конфигурация городской застройки, атмосферные воздействия. Кроме этого, с учетом динамичности развития города необходимо постоянное уточнение соответствующих моделей. То, что принято называть уровнем сигнала (средняя напряженность электромагнитного поля) представляет собой результат сложного взаимодействия физических процессов, протекающих при распространении сигнала: прохождение сигнала сквозь здания и сооружения; воздействие на сигнал помех искусственного и естественного происхождения; атмосферная рефракция сигнала; отражения сигнала от зданий и от земной поверхности; потери энергии сигнала в осадках и др. В данном случае окружающую среду можно исследовать, строя соответствующую ММ, которая должна позволять предсказывать уровень сигнала при заданной конфигурации застройки, рельефе местности, погодных условиях и т. п. Масштабы среды распространения сигнала настолько грандиозны, что эксперимент даже в одном каком-то регионе требует существенных затрат.

    Таким образом, глобальный эксперимент по исследованию распространения сигнала возможен, но не натурный, а вычислительный, проводящий исследования не реальной системы (окружающей среды), а ее ММ. В науке и технике известно немало областей, в которых вычислительный эксперимент оказывается единственно возможным при исследовании сложных систем.

    Пригодность ММ для решения задач исследования характеризуется тем, в какой степени она обладает так называемыми целевыми свойствами, основными из которых являются адекватность, устойчивость и чувствительность.

     

    1.5.2. Оценка адекватности


    В общем случае под адекватностью понимают степень соответствия модели тому реальному явлению или объекту, для описания которого она строится. Вместе с тем, создаваемая модель ориентирована, как правило, на исследование определенного подмножества свойств этого объекта. Поэтому можно считать, что адекватность модели определяется степенью ее соответствия не столько реальному объекту, сколько целям исследования. В наибольшей степени это утверждение справедливо относительно моделей проектируемых систем (т. е. в ситуациях, когда реальная система вообще не существует).

    Тем не менее, во многих случаях полезно иметь формальное подтверждение (или обоснование) адекватности разработанной модели. Один из наиболее распространенных способов такого обоснования - использование методов математической статистики [6, 7, 39]. Суть этих методов заключается в проверке выдвинутой гипотезы (в данном случае - об адекватности модели) на основе некоторых статистических критериев. При этом следует заметить, что при проверке гипотез методами математической статистики необходимо иметь в виду, что статистические критерии не могут доказать ни одной гипотезы - они могут лишь указать на отсутствие опровержения.

    Итак, каким же образом можно оценить адекватность разработанной модели реально существующей системе?

    Процедура оценки основана на сравнении измерений на реальной системе и результатов экспериментов на модели и может проводиться различными способами. Наиболее распространенные из них [10, 26]:

    – по средним значениям откликов модели и системы;

    – по дисперсиям отклонений откликов модели от среднего значения откликов системы;

    – по максимальному значению относительных отклонений откликов модели от откликов системы.

    Названные способы оценки достаточно близки между собой, по сути, поэтому ограничимся рассмотрением первого из них. При этом способе проверяется гипотеза о близости среднего значения наблюдаемой переменной   среднему значению отклика реальной системы  .

    В результате   опытов на реальной системе получают множество значений (выборку)  . Выполнив   экспериментов на модели, также получают множество значений наблюдаемой переменной  .

    Затем вычисляются оценки математического ожидания и дисперсии откликов модели и системы, после чего выдвигается гипотеза о близости средних значений величин   и   (в статистическом смысле). Основой для проверки гипотезы является  -статистика (распределение Стьюдента) [39]. Ее значение, вычисленное по результатам испытаний, сравнивается с критическим значением  , взятым из справочной таблицы [7]. Если выполняется неравенство  , то гипотеза принимается. Необходимо еще раз подчеркнуть, что статистические методы применимы только в том случае, если оценивается адекватность модели существующей системе. На проектируемой системе провести измерения, естественно, не представляется возможным. Единственный способ преодолеть это препятствие заключается в том, чтобы принять в качестве эталонного объекта концептуальную модель проектируемой системы. Тогда оценка адекватности программно реализованной модели заключается в проверке того, насколько корректно она отражает концептуальную модель.

     

    1.5.3. Оценка устойчивости


    При проверке адекватности модели как существующей, так и проектируемой системы реально может быть использовано лишь ограниченное подмножество всех возможных значений входных параметров (рабочей нагрузки и внешней среды). В связи с этим для обоснования достоверности получаемых результатов моделирования большое значение имеет проверка устойчивости модели [10]. В теории моделирования это понятие трактуется следующим образом.

    Устойчивость модели - это ее способность сохранять адекватность при исследовании эффективности системы на всем возможном диапазоне рабочей нагрузки, а также при внесении изменений в конфигурацию системы.

    Каким образом может быть оценена устойчивость модели? Универсальной процедуры проверки устойчивости модели не существует. Разработчик вынужден прибегать к методам «для данного случая», частичным тестам и здравому смыслу. Часто полезна апостериорная проверка. Она состоит в сравнении результатов моделирования и результатов измерений на системе после внесения в нее изменений. Если результаты моделирования приемлемы, уверенность в устойчивости модели возрастает.

    В общем случае можно утверждать, что чем ближе структура модели структуре системы и чем выше степень детализации, тем устойчивее модель. Устойчивость результатов моделирования может быть также оценена методами математической статистики. Здесь уместно вспомнить основную задачу математической статистики, которая заключается в том, чтобы проверить гипотезу относительно свойств некоторого множества элементов, называемого генеральной совокупностью, оценивая свойства какого-либо подмножества генеральной совокупности (то есть выборки). В генеральной совокупности исследователя обычно интересует некоторый признак, который обусловлен случайностью и может иметь качественный или количественный характер.

    В данном случае именно устойчивость результатов моделирования можно рассматривать как признак, подлежащий оценке. Для проверки гипотезы об устойчивости результатов может быть использован критерий Уилкоксона, который служит для проверки того, относятся ли две выборки к одной и той же генеральной совокупности (т. е. обладают ли они одним и тем же статистическим признаком) [7, 39]. Например, в двух партиях некоторой продукции измеряется определенный признак и требуется проверить гипотезу о том, что этот признак имеет в обеих партиях одинаковое распределение; другими словами, необходимо убедиться, что технологический процесс от партии к партии изменяется несущественно. При статистической оценке устойчивости модели соответствующая гипотеза может быть сформулирована следующим образом: при изменении входной (рабочей) нагрузки или структуры ММ закон распределения результатов моделирования остается неизменным.

     

    1.5.4. Оценка чувствительности


    Очевидно, что устойчивость является положительным свойством модели. Однако если изменение входных воздействий или параметров модели (в некотором заданном диапазоне) не отражается на значениях выходных параметров, то польза от такой модели невелика. В связи с этим возникает задача оценивания чувствительности модели к изменению параметров рабочей нагрузки и внутренних параметров самой системы [10].

    Такую оценку проводят по каждому параметру модели в отдельности. Основана она на том, что обычно диапазон возможных изменений параметра известен. Данные, полученные при оценке чувствительности модели, могут быть использованы, в частности, при планировании экспериментов: большее внимание должно уделяться тем параметрам, по которым модель является более чувствительной [42].


    1   2   3   4   5   6


    написать администратору сайта