1. Поверхностный аппарат клетки
Скачать 0.78 Mb.
|
71.Взаимодействия аллельных генов и плейотропия. Взаимодействие аллельных генов В состав генотипа входит большое количество генов, функционирующих и взаимодействуют как целостная система. Г. Мендель в своих опытах обнаружил только одну форму взаимодействия между аллельными генами - полное доминирование одной аллели и полную рецесивнисть другой. Генотип организма нельзя рассматривать как простую сумму независимых генов, каждый из которых функционирует вне связи с другими. Фенотипное проявления того или иного признака являются результатом взаимодействия многих генов. Возможны следующие типы взаимодействия: 1) для образования определенного признака необходимо взаимодействие двух ферментов, синтез которых опрелятся двумя неаллельнимы генами; 2) фермент, что был синтезирован с участием одного гена, полностью подавляет или инактивирует действие фермента, что был образован другим неаллельным геном; 3) два ферменты, образование которых контролируется двумя неаллельми генами, влияющими на один признак или на один процесс так, что их совместное действие приводит к возникновению и усилению проявления признака. Взаимодействие аллельных генов. Гены, которые занимают идентичные (гомологические) локусы в гомологичных хромосомах, называются аллельными. У каждого организма есть по два аллельных гена. Известны такие формы взаимодействия между аллельными генами: полное доминирование, неполное доминирование, кодоминированием и сверхдоминирование. Основная форма взаимодействия - полное доминирование. Суть его заключается в том, что в гетерозиготном организме проявление одной из аллелей доминирует над проявлением другой. При полном доминировании расщепления по генотипу 1:2:1 не совпадает с расщеплением по фенотипу - 3:1. В медицинской практике с двух тысяч моногенных наследственных болезней почти в половины имеет место доминированое проявления патологических генов над нормальными. В гетерозигот патологический аллель проявляется в большинстве случаев признаками заболевания (доминантный фенотип). Неполное доминирование - форма взаимодействия, при которой у гетерозиготного организма (Аа) доминантный ген (А) не полностью подавляет рецессивный ген (а), вследствие чего проявляется промежуточный между родительскими признак. Здесь расщепление по генотипу и фенотипу совпадает и составляет 1:2:1 При кодоминировании в гетерозиготных организмах каждый из аллельных генов вызывает формирование зависимого от него продукта, то есть оказываются продукты обеих аллелей. Классическим примером такого проявления является система групп крови, в частности система АBО, когда эритроциты человека несут на поверхности антигены, контролируемые обеими аллелями. Такая форма проявления носит название кодоминированием. Сверхдоминирование - когда доминантный ген в гетерозиготном состоянии проявляется сильнее, чем в гомозиготном. Так, у дрозофилы при генотипе АА-нормальная продолжительность жизни; Аа - удлиненная триватисть жизни; аа - летальный исход. Плейотропия Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена. В дрозофилы ген белого цвета глаз одновременно влияет на цвет тела, длины, крыльев, строение полового аппарата, снижает плодовитость, уменьшает продолжительность жизни. У человека известна наследственная болезнь - арахнодактилия ("паучьи пальцы"-очень тонкие и длинные пальцы), или болезнь Марфана. Ген, отвечающий за эту болезнь, вызывает нарушение развития соединительной ткани и одновременно влияет на развитие нескольких признаков: нарушение строения хрусталика глаза, аномалии в сердечно-сосудистой системе. Плейотропное действие гена может быть первичным и вторичным. При первичной плейотропии ген проявляет свой множественный эффект. Например, при болезни Хартнупа мутация гена приводит к нарушению всасывания аминокислоты триптофана в кишечнике и его реабсорбции в почечных канальцах. При этом поражаются одновременно мембраны эпителиальных клеток кишечника и почечных канальцев с расстройствами пищеварительной и выделительной систем. При вторичной плейотропии есть один первичный фенотипний проявление гена, вслед за которым развивается ступенчатый процесс вторичных изменений, приводящих к множественным эффектам. Так, при серповидно клеточной анемии у гомозигот наблюдается несколько патологических признаков: анемия, увеличенная селезенка, поражение кожи, сердца, почек и мозга. Поэтому гомозиготы с геном серповидно клеточной анемии гибнут, как правило, в детском возрасте. Все эти фенотипные проявления гена составляют иерархию вторичных проявлений. Первопричиной, непосредственным фенотипним проявлением дефектного гена является аномальный гемоглобин и эритроциты серповидной формы. Вследствие этого происходят последовательно другие патологические процессы: слипание и разрушение эритроцитов, анемия, дефекты в почках, сердце, мозге - эти патологические признаки вторичны. 72.Генотип и фенотип, эпистаз. Генотип – совокупность наследственных признаков и свойств, полученных особью от родителей. А также новых свойств, появившихся в результате мутаций генов, которых не было у родителей. Генотип складывается при взаимодействии двух геномов (яйцеклетки и сперматозоида) и представляет собой наследственную программу развития, являясь целостной системой, а не простой суммой отдельных генов. Целостность генотипа – результат эволюционного развития, в ходе которого все гены находились в тесном взаимодействии друг с другом и способствовали сохранению вида, действуя в пользу стабилизирующего отбора. Так, генотип человека определяет (детерминирует) рождение ребенка, у зайца – беляка потомство будет представлено зайчатами, из семян подсолнечника вырастет только подсолнечник. Фенотип – совокупность всех признаков и свойств организма, сложившихся в процессе индивидуального развития генотипа. Сюда относятся не только внешние признаки (цвет кожи, волос, форма уха или нома, окраска цветков), но и внутренние: анатомические (строение тела и взаимное расположение органов), физиологические (форма и размеры клеток, строение тканей и органов), биохимические (структура белка, активность фермента, концентрация гормонов в крови). Каждая особь имеет свои особенности внешнего вида, внутреннего строения, характера обмена веществ, функционирования органов, т.е. свой фенотип, который сформировался в определенных условиях среды. Понятия генотип и фенотип – очень важные в генетике. Фенотип формируется под влиянием генотипа и условий внешней среды. Известно, что генотип отражается в фенотипе, а фенотип наиболее полно проявляется в определенных условиях среды. Таким образом, проявление генофонда породы (сорта) зависит от окружающей среды, т.е. условий содержания (климатические факторы, уход). Часто сорта, созданные в одних районах, мало пригодны к разведению в других. Эпистаз - взаимодействие генов, при котором активность одного гена находится под влиянием вариаций других генов. Ген, подавляющий фенотипические проявления другого, называется эпистатичным; ген, чья активность изменена или подавлена, называется гипостатичным. Примеры эпистатического влияния тесно связанных генов на приспособленность можно обнаружить в супергенах и главном комплексе гистосовместимости. Эффект может проявляться как напрямую на уровне генов, при этом продукт эпистатичного гена предотвращает транскрипцию гипостатичного, так и на уровне фенотипов. 73.Генотип и фенотип. Комплементарность. Генотип – совокупность наследственных признаков и свойств, полученных особью от родителей. А также новых свойств, появившихся в результате мутаций генов, которых не было у родителей. Генотип складывается при взаимодействии двух геномов (яйцеклетки и сперматозоида) и представляет собой наследственную программу развития, являясь целостной системой, а не простой суммой отдельных генов. Целостность генотипа – результат эволюционного развития, в ходе которого все гены находились в тесном взаимодействии друг с другом и способствовали сохранению вида, действуя в пользу стабилизирующего отбора. Так, генотип человека определяет (детерминирует) рождение ребенка, у зайца – беляка потомство будет представлено зайчатами, из семян подсолнечника вырастет только подсолнечник. Фенотип – совокупность всех признаков и свойств организма, сложившихся в процессе индивидуального развития генотипа. Сюда относятся не только внешние признаки (цвет кожи, волос, форма уха или нома, окраска цветков), но и внутренние: анатомические (строение тела и взаимное расположение органов), физиологические (форма и размеры клеток, строение тканей и органов), биохимические (структура белка, активность фермента, концентрация гормонов в крови). Каждая особь имеет свои особенности внешнего вида, внутреннего строения, характера обмена веществ, функционирования органов, т.е. свой фенотип, который сформировался в определенных условиях среды. Если рассмотреть результаты самоопыления гибридов F2, можно обнаружить, что растения, выросшие из желтых семян, будучи внешне сходными, имеющие одинаковый фенотип, обладают различной комбинацией генов, т.е. разный генотип. Понятия генотип и фенотип – очень важные в генетике. Фенотип формируется под влиянием генотипа и условий внешней среды. Известно, что генотип отражается в фенотипе, а фенотип наиболее полно проявляется в определенных условиях среды. Таким образом, проявление генофонда породы (сорта) зависит от окружающей среды, т.е. условий содержания (климатические факторы, уход). Часто сорта, созданные в одних районах, мало пригодны к разведению в других. Под комплементарностью понимают такой тип взаимодействия генов, при котором два гена вместе обусловливают развитие нового признака, отличного от родительских вариантов. Существует не менее трех типов комплементарности: • доминантные гены различаются по фенотипическому проявлению; • доминантные гены имеют сходное фенотипическое проявление; • и доминантные, и рецессивные гены имеют самостоятельное фенотипическое проявление. 74.Генотип, фенотип, полимерия. Генотип – совокупность наследственных признаков и свойств, полученных особью от родителей. А также новых свойств, появившихся в результате мутаций генов, которых не было у родителей. Генотип складывается при взаимодействии двух геномов (яйцеклетки и сперматозоида) и представляет собой наследственную программу развития, являясь целостной системой, а не простой суммой отдельных генов. Целостность генотипа – результат эволюционного развития, в ходе которого все гены находились в тесном взаимодействии друг с другом и способствовали сохранению вида, действуя в пользу стабилизирующего отбора. Так, генотип человека определяет (детерминирует) рождение ребенка, у зайца – беляка потомство будет представлено зайчатами, из семян подсолнечника вырастет только подсолнечник. Фенотип – совокупность всех признаков и свойств организма, сложившихся в процессе индивидуального развития генотипа. Сюда относятся не только внешние признаки (цвет кожи, волос, форма уха или нома, окраска цветков), но и внутренние: анатомические (строение тела и взаимное расположение органов), физиологические (форма и размеры клеток, строение тканей и органов), биохимические (структура белка, активность фермента, концентрация гормонов в крови). Каждая особь имеет свои особенности внешнего вида, внутреннего строения, характера обмена веществ, функционирования органов, т.е. свой фенотип, который сформировался в определенных условиях среды. Если рассмотреть результаты самоопыления гибридов F2, можно обнаружить, что растения, выросшие из желтых семян, будучи внешне сходными, имеющие одинаковый фенотип, обладают различной комбинацией генов, т.е. разный генотип. Известно, что генотип отражается в фенотипе, а фенотип наиболее полно проявляется в определенных условиях среды. Таким образом, проявление генофонда породы (сорта) зависит от окружающей среды, т.е. условий содержания (климатические факторы, уход). Часто сорта, созданные в одних районах, мало пригодны к разведению в других. Полимерия — обусловленность определенного (обычно количественного) признака несколькими эквивалентными (полимерными) генами. При таком взаимодействии индивидуальное проявление каждого усиливается в результате взаимодействия. Полимерия бывает двух видов некумулятивная когда не важно количество доминантных генов в генотипе, а важно его присутствие; кумулятивная — когда число доминантных аллелей влияет на степень выраженности данного признака. У человека по типу кумулятивной полимерии наследуется пигментация кожи: чем больше доминантных аллелей, тем больше меланина образуется и тем интенсивнее окраска кожи. Разберем следующий пример, в котором необходимо определить вероятность появления детей с разными фенотипами в браке мулатов (особи дигетерозиготны). В случаях наследования двух полимерных генов цифровые расщепления при скрещивании гибридов будут иметь четкие зависимости, являющиеся модификациями все того же расщепления для двух генов 9:3:3:1. При кумулятивной полимерии соотношение фенотипов будет 1:4:6:4:1, а "при некумулятивной полимерии — 15:1. 75.Фенотип. Роль материнских и внутренних факторов. Пенетрантность и экспрессивность. Фенотип – совокупность всех признаков и свойств организма, сложившихся в процессе индивидуального развития генотипа. Сюда относятся не только внешние признаки (цвет кожи, волос, форма уха или нома, окраска цветков), но и внутренние: анатомические (строение тела и взаимное расположение органов), физиологические (форма и размеры клеток, строение тканей и органов), биохимические (структура белка, активность фермента, концентрация гормонов в крови). Каждая особь имеет свои особенности внешнего вида, внутреннего строения, характера обмена веществ, функционирования органов, т.е. свой фенотип, который сформировался в определенных условиях среды. Если рассмотреть результаты самоопыления гибридов F2, можно обнаружить, что растения, выросшие из желтых семян, будучи внешне сходными, имеющие одинаковый фенотип, обладают различной комбинацией генов, т.е. разный генотип. Известно, что генотип отражается в фенотипе, а фенотип наиболее полно проявляется в определенных условиях среды. Таким образом, проявление генофонда породы (сорта) зависит от окружающей среды, т.е. условий содержания (климатические факторы, уход). Часто сорта, созданные в одних районах, мало пригодны к разведению в других. Экспрессивность и пенетрантность генов. В идеале каждому генотипу должен соответствовать строго определенный генотип. Однако такое однозначное соответствие встречается сравнительно редко. Экспрессивностью называется степень выраженности рассматриваемого признака у организмов с одинаковым генотипом. Экспрессивностью характеризуется конкретная особь. Пенетрантностью проявления гена называется отношение числа особей, у которых проявляется данный признак, к общему числу с данным генотипом. Пенетрантностью характеризуется признак в однородной группе особей. При полной пенетрантности (100%) мутантный ген проявляет свое действие у всех особей, имеющих его, а при неполной – лишь у некоторых. Экспрессивность и пенетрантность часто зависят от условия среды, в которой развивается организм: освещения, температуры или влажности. 76.Фенотип. Роль факторов внешней среды. Модификации и их характеристика. Фенотип – совокупность всех признаков и свойств организма, сложившихся в процессе индивидуального развития генотипа. Сюда относятся не только внешние признаки (цвет кожи, волос, форма уха или нома, окраска цветков), но и внутренние: анатомические (строение тела и взаимное расположение органов), физиологические (форма и размеры клеток, строение тканей и органов), биохимические (структура белка, активность фермента, концентрация гормонов в крови). Каждая особь имеет свои особенности внешнего вида, внутреннего строения, характера обмена веществ, функционирования органов, т.е. свой фенотип, который сформировался в определенных условиях среды. Если рассмотреть результаты самоопыления гибридов F2, можно обнаружить, что растения, выросшие из желтых семян, будучи внешне сходными, имеющие одинаковый фенотип, обладают различной комбинацией генов, т.е. разный генотип. Известно, что генотип отражается в фенотипе, а фенотип наиболее полно проявляется в определенных условиях среды. Таким образом, проявление генофонда породы (сорта) зависит от окружающей среды, т.е. условий содержания (климатические факторы, уход). Часто сорта, созданные в одних районах, мало пригодны к разведению в других. Модификационная изменчивость — это результат не изменений генотипа, а его реакции на условия окружающей среды. При модификационной изменчивости наследственный материал не изменяется, — изменяется проявление генов. Под действием определенных условий окружающей среды на организм изменяется течение ферментативных реакций (активность ферментов) и может происходить синтез специализированных ферментов, некоторые из которых (MAP-киназа и др.) ответственны за регуляцию транскрипции генов, зависящую от изменений окружающей среды. Таким образом, факторы окружающей среды способны регулировать экспрессию генов, то есть интенсивность выработки ими специфических белков, функции которых отвечают специфическим факторам окружающей среды. Например, за выработку меланина ответственны четыре гена, которые находятся в разных хромосомах. Наибольшее количество доминантных аллелей этих генов — 8 — содержится у людей негроидной расы. При воздействии специфической окружающей среды, например, интенсивного воздействия ультрафиолетовых лучей, происходит разрушение клеток эпидермиса, что приводит к выделению эндотелина-1 и эйкозаноидов. Они вызывают активацию фермента тирозиназы и его биосинтез. Тирозиназа, в свою очередь, катализирует окисление аминокислоты тирозина. Дальнейшее образование меланина проходит без участия ферментов, однако большее количество фермента обуславливает более интенсивную пигментацию. Модификационная (фенотипическая) изменчивость — изменения в организме, связанные с изменением фенотипа вследствие влияния окружающей среды и носящие, в большинстве случаев, адаптивный характер. Генотип при этом не изменяется. В целом современное понятие «адаптивные модификации» соответствует понятию «определенной изменчивости», которое ввел в науку Чарльз Дарвин. 77.Моногенное наследование (законы Менделя I и П). Моногенное наследования Моногенным называется такой тип наследования, когда наследственный признак контролируется одним геном. Закономерности моногенной наследственности изучал выдающийся ученый Г. Мендель. Он экспериментально обосновал наличие единиц наследственности (наследственных задатков, наследственных факторов) и описал их основные свойства - дискретность, стабильность, специфичность аллельного состояния. Принципиально новым вкладом Г. Менделя в изучение наследования стал метод гибридизации (гибрид - это совокупность). Анализируя результаты моно-и дигибридного скрещивания гороха, он пришел к выводу, что: 1) развитие наследственных признаков зависит от передачи потомкам наследственных факторов; 2) наследственные единицы, которые контролируют развитие отдельного признака - парные: один происходит от отца, второй - от матери. В функциональном отношении факторы имеют свойства доминантного и рецессивного признаков, доминантный признак - которая проявляет себя, рецессивный признак - в одинарной дозе себя не проявляет. 3) наследственные факторы передаются в ряду поколений, не теряя своей индивидуальности, т.е. характеризуются постоянством; 4) в процессе образования половых клеток парные аллельные (формы, состояния) гены попадают в разные гаметы (закон чистоты гамет). Восстановление таких пар происходит в результате оплодотворения; 5) материнский и отцовский организмы в равной степени участвуют в передаче своих наследственных факторов потомкам. Признаки человека, по Менделю. Общие законы наследственности одинаковы для всех живых существ. Для человека характерны такие известные типы наследования признаков: доминантный и рецессивный, аутосомный и связанный с половыми хромосомами. Известно более 100 видов метаболических аномалий у человека, которые унаследуются согласно моногибридного схеме Менделя, например, галактоземия, фенилкетонурия, различные формы гемоглобинопатии и другие. Признаки человека по Менделю - это признаки, которые подчиняются или наследуются согласно законам, которые установлены Г. Менделем. Моногенные - это такие наследственные заболевания, которые определяются одним геном, то есть когда проявление заболевания определяется взаимодействием аллельных генов, один из которых доминирует над другим. 78.Полигенное наследование (закон Менделя Ш). Третий закон Менделя, или закон независимого наследования признаков. Изучая расщепления при дигибридном скрещивании, Мендель обратил внимание на следующее обстоятельство. При скрещивании растений с желтыми гладкими (ААВВ) и зелеными морщинистыми (ааbb) семенами во втором поколении появлялись новые комбинации признаков: желтые морщинистое (Ааbb) и зеленые гладкие (ааВb), которые не встречались в исходных формах. Из этого наблюдения Мендель сделал вывод, что расщепление по каждой признаку происходит независимо от второго признака. В этом примере форма семян наследовалась независимо от их окраски. Эта закономерность получила название третьего закона Менделя, или закона независимого распределения генов. Третий закон Менделя формулируется следующим образом: при скрещивании гомозиготных особей, отличающихся по двум (или более) признаках, во втором поколении наблюдаются независимое наследование и комбинирование состояний признаков, если гены, которые их определяют, расположенные в разных парах хромосом. Это возможно потому, что во время мейоза распределение (комбинирования) хромосом в половых клетках при их созревании идет независимо и может привести к появлению потомства с комбинацией признаков, отличных от родительских и прародительский особей. Для записи скрещиваний нередко используют специальные решетки, которые предложил английский генетик Пеннет (решетка Пеннета). Ими удобно пользоваться при анализе полигибридних скрещиваний. Принцип построения решетки состоит в том, что сверху по горизонтали записывают гаметы отцовской особи, слева по вертикали - гаметы материнской особи, в местах пересечения - вероятные генотипы потомства. 79.Сцепленное наследование и кроссинговер (закон Моргана). Сцепленными признаками называются признаки, которые контролируются генами, расположенными в одной хромосоме. Естественно, что они передаются вместе в случаях полного сцепления. Закон Моргана Сцепленные гены, локализованные в одной хромосоме, наследуются совместно и не обнаруживают независимого распределения Кроссинговер Гомологичные хромосомы могут перекрещиваться (кроссинговер или прекрест) и обмениваться гомологичными участками. В этом случае гены одной хромосомы переходят в другую, гомологичную ей. Чем ближе друг к другу расположены гены в хромосоме, тем сильнее между ними сцепление и тем реже происходит их расхождение при кроссинговере, и, наоборот, чем дальше друг от друга отстоят гены, тем слабее сцепление между ними и тем чаще возможно его нарушение. Количество разных типов гамет будет зависеть от частоты кроссинговера или расстояния между анализируемыми генами. Расстояние между генами исчисляется в морганидах: единице расстояния между генами, находящимися в одной хромосоме, соответствует 1% кроссинговера. Такая зависимость между расстояниями и частотой кроссинговера прослеживается только до 50 морганид. 80.Хромосомная теория наследственности. Основоположник теории Томас Гент Морган, американский генетик, нобелевский лауреат, выдвинул гипотезу об ограничении законов Менделя. В экспериментах он использовал плодовую мушку-дрозо-филу, обладающую важными для генетических экспериментов качествами: неприхотливостью, плодовитостью, небольшим количеством хромосом (четыре пары), множеством четко выраженных альтернативных признаков. Морган и его ученики установили следующее: 1. Гены, расположенные в одной хромосоме, наследуются совместно или сцепленно. 2. Группы генов, расположенных в одной хромосоме, образуют группы сцепления. Число групп сцепления равно гаплоидному набору хромосом у гомогаметных особей и п+1 у гетерогаметных особей. 3. Между гомологичными хромосомами может происходить обмен участками (кроссинговер); в результате кроссин-говера возникают гаметы, хромосомы которых содержат новые комбинации генов. 4. Частота кроссинговера между гомологичными хромосомами зависит от расстояния между генами, локализованными в одной хромосоме. Чем это расстояние больше, тем выше частота кроссинговера. За единицу расстояния между генами принимают 1 морганиду (1% кроссинговера) или процент появления кроссоверных особей. При значении этой величины в 10 морганид можно утверждать, что частота перекреста хромосом в точках расположения данных генов равна 10% и что в 10% потомства будут выявлены новые генетические комбинации. 5. Для выяснения характера расположения генов в хромосомах и определения частоты кроссинговера между ними строят генетические карты. Карта отражает порядок расположения генов в хромосоме и расстояние между генами одной хромосомы. Эти выводы Моргана и его сотрудников получили название хромосомной теории наследственности. Важнейшими следствиями этой теории являются современные представления о гене как о функциональной единице наследственности, его делимости и способности к взаимодействию с другими генами. Кроссинговер приводит к новому сочетанию генов, вызывает изменение фенотипа. Кроме того, он наряду с мутациями является важным фактором эволюции организмов. 81.Классификация изменчивости. Изменчивость - способность живых организмов приобретать новые признаки и свойства. Изменчивость отражает взаимосвязь организмов с внешней средой. Различают ненаследственную и наследственную изменчивость. Изменчивость — способность живых организмов приобретать новые признаки и свойства. Благодаря изменчивости, организмы могут приспосабливаться к изменяющимся условиям среды обитания. Различают две основные формы изменчивости: наследственная и ненаследственная. Наследственная, или генотипическая, изменчивость — изменения признаков организма, обусловленные изменением генотипа. Она, в свою очередь, подразделяется на комбинативную и мутационную. Комбинативная изменчивость возникает вследствие перекомбинации наследственного материала (генов и хромосом) во время гаметогенеза и полового размножения. Мутационная изменчивость возникает в результате изменения структуры наследственного материала. Генотипическая изменчивость складывается из МУТАЦИОННОЙ И КОМБИНАТИВНОЙ изменчивости. В основе наследственной изменчивости лежит половое размножение живых организмов, которое обеспечивает огромное разнообразие генотипов. Чем обусловлена комбинативная изменчивость? Во-первых, тем, что генотип любой особи представляет собой сочетание генов материнского и отцовского организмов. Во-вторых, независимое расхождение гомологичных хромосом в первом мейотическом делении. В-третьих, рекомбинация генов (изменение состава групп сцепления), связанная с кроссинговером (перекрестом). И еще один фактор комбинативной изменчивости - случайное сочетание генов при оплодотворении. Все названные источники комбинативной изменчивости действуют независимо и одновременно, создавая огромное многообразие генотипов. Ненаследственная, или фенотипическая, или модификационная, изменчивость — изменения признаков организма, не обусловленные изменением генотипа. 1. ГЕНОМНЫЕ МУТАЦИИ - связанные с изменением числа хромосом. 2. ХРОМОСОМНЫЕ МУТАЦИИ - это перестройки хромосом, изменение их строения. Отдельные участки хромосом могут теряться, удваиваться, менять свое положение. 3. ГЕННЫЕ МУТАЦИИ связаны с изменением состава или последовательности нуклеотидов ДНК в пределах гена. Генные мутации наиболее важны среди всех категорий мутаций. 82.Комбинативная и эпигеномная изменчивость. Комбинативная изменчивость широко распространена в природе. Она является важнейшим источником большого наследственного разнообразия, наблюдаемого у животных организмов. Новые комбинации наследственной информации появляются в результате полового размножения. Комбинативная изменчивость связана с получением новых сочетаний генов в генотипе, что приводит к появлению организмов с новым фенотипом. Это происходит в результате:
Сами гены при этом не изменяются. Отличие детей от родителей связано с комбинированием в генотипе детей генов их родителей. Комбинативной изменчивостью у человека можно объяснить появление у детей II и III групп крови, в отличие от I и IV групп, характерных для их родителей. Селекционеры часто используют скрещивание отличающихся друг от друга пород и сортов для получения новых. У гибридов, возникших в результате скрещивания, проявились не только новые сочетания признаков, но и новые признаки. Например, при скрещивании кур с розовидным гребнем с породой, обладающей гороховидным гребнем закономерно появились особи с ореховидным гребнем. С комбинативной изменчивостью связано явление гетерозиса - повышенной гибридной силы - которая наблюдается в 1-м поколении при гибридизации между разными сортами растений. У гибридов увеличивается рост, жизнеспособность, урожайность. Ярко выражен гетерозис у кукурузы. Гетерозис можно объяснить тем, что: 1. У гибридов увеличивается число доминантных генов, влияющих на развитие признака. Например, если предположить, что на рост влияют гены А и В, то в результате брака представителей с генотипами ААвв и ааВВ ребенок с генотипом АаВв будет иметь более высокий рост: 1.В данном случае имеет место комплементарное действие генов. 2. Иногда гетерозисный организм имеет более выраженные признаки, чем доминантный гомозиготный. 83.Изменчивость. Генные мутации. Изменчивость — способность живых организмов приобретать новые признаки и свойства. Благодаря изменчивости, организмы могут приспосабливаться к изменяющимся условиям среды обитания. Различают две основные формы изменчивости: наследственная и ненаследственная. Наследственная, или генотипическая, изменчивость — изменения признаков организма, обусловленные изменением генотипа. Она, в свою очередь, подразделяется на комбинативную и мутационную. Комбинативная изменчивость возникает вследствие перекомбинации наследственного материала (генов и хромосом) во время гаметогенеза и полового размножения. Мутационная изменчивость возникает в результате изменения структуры наследственного материала. Ненаследственная, или фенотипическая, или модификационная, изменчивость — изменения признаков организма, не обусловленные изменением генотипа. Генные мутации образуются наиболее часто и затрагивают структуру гена. Ген - участок молекулы ДНК. Генные мутации возникают при изменении химической структуры гена. Это происходит в результате замены одной или нескольких пар азотистых оснований, или мутаций со сдвигом рамки считывания информации, связанных с выпадением или вставкой одного или нескольких азотистых оснований (рис. 172). Мутации, затрагивающие одну пару оснований и приводящие к замене на другую, удвоению, делеции, называют точковыми. Происходит нарушение последовательности нуклеотидов в молекуле ДНК. Это приводит к изменению строения белка. Генные мутации возникают при замене, выпадении, вставке пар нуклеотидов. Большинство мутаций - генные. С ними связаны изменения морфологических, биохимических, физиологических признаков.
1. ГЕНОМНЫЕ МУТАЦИИ - связанные с изменением числа хромосом. Особый интерес представляет ПОЛИПЛОИДИЯ - кратное увеличение числа хромосом, т.е. вместо 2n хромосомного набора возникает набор 3n,4n,5n и более. Возникновение полиплоидии связанно с нарушением механизма деления клеток. В частности, нерасхождение гомологичных хромосом во время первого деления мейоза приводит к появлению гамет с 2n набором хромосом. Полиплоидия широко распространена у растений и значительно реже у животных (аскарид, шелкопряда, некоторых земноводных). Полиплоидные организмы, как правило, характеризуются более крупными размерами, усиленным синтезом органических веществ, что делает их особенно ценными для селекционных работ. Изменение числа хромосом, связанное с добавлением или потерей отдельных хромосом, называется АНЕУПЛОИДИЕЙ. Мутацию анеуплоидии можно записать как 2n-1, 2n+1, 2n-2 и т.д. Анеуплоидия свойственна всем животным и растениям. У человека ряд заболеваний связан именно с анеуплоидией. Например, болезнь Дауна связана с наличием лишней хромосомы в 21-й паре. 2. ХРОМОСОМНЫЕ МУТАЦИИ - это перестройки хромосом, изменение их строения. Отдельные участки хромосом могут теряться, удваиваться, менять свое положение. Схематично это можно показать следующим образом: ABCDE нормальный порядок генов ABBCDE удвоение участка хромосомы ABDE потеря одного участка ABEDC поворот участка на 180 градусов ABCFG обмен участками с негомологичной хромосомой Как и геномные мутации, хромосомные мутации играют огромную роль в эволюционных процессах. 85.Генетика пола. Пол и его дифференцировка. Хромосомная теория наследственности. Генетика пола Известно, что хромосомы одной гомологической (похожей) пары сходны между собой, но это справедливо не для всех пар хромосом. При сравнении хромосомных наборов неполовых клеток женского и мужского пола в одной паре хромосом выявлены различия, хотя в одном из полов и эти хромосомы одинаковые. Их называют Х (икс) хромосомами. У второй пола одна такая же Х-хромосома, а вторая отличается по своему строению. Она названа Y-хромосомой. Эту пару принято называть половым хромосомам, а все пары хромосом идентичны у мужской и женской особей - ауто сомами. Половые (Х и Y) хромосомы отличаются не только по морфологии, а также по информации, что содержится в них. Сочетание половых хромосом между собой определяет пол организма. Клетки женского организма содержат две Х-хромосомы (ХХ). Мужские клетки содержат одну Х и одну Y-хромосомы (ХY). Гаметой женского организма является яйцеклетка. В процессе овогенеза (образования яйцеклетки) яйцеклетка всегда содержит Х-хромосому. Гаметой мужского организма является сперматозоид, который образуется в процессе сперматогенеза и может содержать Х или Y-хромосому. Во время оплодотворения происходит слияние женской яйцеклетки и мужского сперматозоида. Соответственно Х-хромосома во время слияния объединяется с другой половой хромосомой от сперматозоида - Х или Y. При слиянии гаметы (яйцеклетка у женщин и сперматозоид у мужчин) Х-хромосомы матери с гамет с Х-хромосомой отца образуется зигота (структура образующаяся при слиянии гамет и дает начало новому организму) с двумя Х-хромосомами (ХХ), которая дает начало женскому организму. Если же сливается гамета матери с Х-хромосомой с гамет ой отца с Y-хромосомой, то образуется зигота, которая содержит одну X и одну Y-хромосому (ХY) соответственно давая начало мужском оранизму. 86.Генетика пола. Наследование признаков, сцепленных с полом. Фенотипические различия между особями разного пола обусловлены генотипом. Есть правила индивидуальности, постоянства и парности хромосом. Гены находятся в хромосомах. Диплоидный набор хромосом называют кариотипом. В женском и мужском кариотипе 23 пары (46) хромосом. 22 пары хромосом одинаковы. Их называют аутосомами. 23-я пара хромосом - половые хромосомы. В женском кариотипе одинаковые XX-половые хромосомы. В мужском организме XY-половые хромосомы. Y - хромосома очень мала и содержит мало генов. Пол наследуется как менделирующий признак (по законам Менделя). Сочетание половых хромосом в зиготе определяет пол будущего организма .При созревании половых клеток в результате мейоза гаметы получают гаплоидный набор хромосом. В каждой яйцеклетке есть 22 аутосомы + Х-хромосома. Пол, который образуют гаметы, одинаковые по половой хромосоме, называют гомогаметным. Сперматозоиды дают гаметы двух видов: половина содержит 22 аутосомы + Х - половую хромосому, и половина содержит 22 аутосомы + Y - половую хромосому. Пол, образующий разные гаметы, называют гетерогаметным. Пол будущего ребенка определяется в момент оплодотворения и зависит от того, каким сперматозоидом будет оплодотворена данная яйцеклетка. Если яйцеклетка оплодотворена сперматозоидом, имеющим Х - хромосому, развивается женский организм, если Y -хромосому - мужской. Теоретически вероятность рождения мальчика и девочки равна 1:1 или 50%:50%. Однако, рождается больше мальчиков, но т.к. мужской организм имеет всего одну Х - хромосому, и все гены (доминантные и рецессивные) проявляют свое действие, то мужской организм менее жизнеспособен. Такое определение пола характерно для человека и млекопитающих. Женщина может быть гомозиготна или гетерозиготна по генам, локализованным в Х - хромосоме, но рецессивные гены проявляются только в гомозиготном состоянии. Если гены находятся в Y - хромосоме (голандрическое наследование), то признаки, ими обусловленные, передаются от отца к сыну. Например, так наследуется волосатость ушей. Y - хромосома у человека контролирует дифференцировку семенников. У мужчин одна Х - хромосома. Все гены, находящиеся в ней, в том числе и рецессивные, проявляются в фенотипе. В этом заключается одна из причин повышенной смертности мужских особей по сравнению с женскими. Признаки, проявление которых различно у представителей разных полов, или проявляющиеся у одного пола, относятся к признакам, ограниченным полом. Есть признаки, зависимые от пола. Гены, степень проявления которых определяется уровнем половых гормонов, называются генами, зависимыми от пола. Эти гены могут находиться не только в половых хромосомах, но и в любых аутосомах. Например, ген определяющий облысение, типичное для мужчин, локализован в аутосоме, и его проявление зависит от мужских половых гормонов. У мужчин этот ген действует как доминантный, а у женщин как рецессивный. Если у женщин этот ген в гетерозиготном состоянии, то признак не проявляется. Даже в гомозиготном состоянии у женщин этот признак слабее выражен, чем у мужчин. 87.Генеалогический метод. Генеалогический метод очень часто используют для изучения закономерностей наследования у человека. Этот метод широко применяют для: установления наследственного характера признака; определения типа наследования и пенетрантности генотипа; анализа сцепления генов и составления карт хромосом; изучения мутационного процесса; расшифровки механизмов взаимодействия генов; медико-генетического консультирования. С помощью этого метода можно выявить родственные связи и проследить признак (например, болезнь) среди близких и далеких прямых и непрямых родственников Генеалогический метод может быть использован не только в диагностических целях, но и позволяет прогнозировать вероятность проявления признака в потомстве и имеет большое значение для предупреждения наследственных болезней.. При анализе родословных можно обнаружить генные и хромосомные болезни, и болезни, в развитии которых принимают участие не только генетические факторы, но и условия среды. При мультифакториальных болезнях в группу риска относят лиц с учетом наследственной отягощенности, которая зависит от тяжести заболевания, степени родства с больными и числа больных в семье. Выявление групп риска позволяет эффективно провести лечебно-профилактические мероприятия у лиц, генетически предрасположенных к заболеваниям . 88..Близнецовый метод генетики человека. Среди методов генетического анализа большое значение имеет близнецовый метод, позволяющий отдифференцировать роль условий среды и генотипа в развитии различных признаков, предрасположения к заболеваниям и др. Суть метода в сравнении разных групп близнецов, исходя из сходства и различия их генотипов и среды; в которой они росли. При этом сопоставляют: монозиготных близнецов с дизиготными; монозиготных близнецов между собой; результаты анализа близнецовой выборки в общей популяции. Близнецы могут быть однояйцевыми (монозиготными, идентичными) или разнояйцевыми (дизиготными, неидентичными). Однояйцевые близнецы возникают на самых ранних стадиях дробления зиготы, когда два или четыре бластомера при обособлении сохраняют способность развиться в полноценный организм (рис. 199). Зигота делится митозом, поэтому генотипы однояйцевых близнецов идентичны. Однояйцевые близнецы всегда одного пола (рис. 200). Разнояйцевые близнецы возникают при оплодотворении двух или нескольких одновременно созревших клеток. Они имеют около 50% общих генов, т.е. подобны обычным братьям и сестрам, рожденным в разное время, и могут быть однополыми и разнополыми. Частота рождения близнецов невелика и составляет около 1% (1/3 однояйцевые, 2/3 разнояйцевые). Большинство близнецов - двойни. Многоплодные беременности бывают не только двойнями, но и тройнями, четвернями и более (рис. 201). Исследование с использованием близнецового метода состоит из трех этапов: 1. Составление выборки. Для этого в популяциях или отбирают всех близнецов, а затем тех, кто имеет анализируемые признаки, или из всего населения выделяют лиц с данными признаками, а потом среди них - близнецов.
Другой метод установления зиготности - иммуногенетический. Близнецов сравнивают по эритроцитарным антигенам системы АВ0, Rh и др., и составу белков сыворотки. Эти менделирующие признаки не изменяются в течение жизни и не зависят от внешних факторов. При отсутствии ошибок определения даже единственное различие может свидетельствовать о дизиготности близнецов. Используют также метод дерматоглифики (исследование кожных узоров пальцев рук и ладоней) (3. Восстановление пар и групп близнецов по рассматриваемым признакам. Методы сравнения близнецовых выборок по качественным (дискретным) признакам (ахондроплазия, альбинизм и др.) и количественным (рост, масса тела, артериальное давление, продолжительность жизни и др.) различны (рис. 208). Степень конкордантности по качественным признакам у монозиготных близнецов очень высока и стремится к 100%, а у дизиготных меньше - около 70%. При изучении роли наследственности и среды в формировании количественных признаков степень различия близнецов определяется у дизигот -наследственностью и средой, у монозигот - только средой. При идентичном генотипе сходная реакция на внешний фактор (туберкулезная инфекция) наступает чаще, чем при разных генотипах, что доказывает важную роль генетических факторов. Исследования показали, что высокая конкордантность способствует не только возникновению болезни, но и ее клиническому проявлению (рис. 209). Из количественных признаков рост меньше зависит от влияния факторов внешней среды, чем масса. Различие роста между монозиготными близнецами составляет 1,7 см, между дизиготными - 4,4 см. Монозиготные близнецы значительно чаще болеют формами туберкулеза, одинаковыми по течению и исходу. Монозиготные близнецы обычно проявляют способности к одному и тому же виду деятельности, а дизиготные - к различным. Близнецовый метод позволил доказать основной закон генетики развития: индивидуальные свойства каждого организма формируются в онтогенезе под контролем генотипа и среды. Действие факторов среды на развитие признаков после рождения можно проследить в том случае, если сразу после рождения их воспитывать отдельно. Например, один живет в городе, а другой - в сельской местности. Если близнецы монозиготны, то можно определить влияние факторов среды в формировании признаков, составить представление о норме реакции данного гена. При сравнении моно- и дизиготных близнецов в одной и той же среде можно сделать вывод о роли генов в развитии признаков. Близнецовый метод позволил применить метод контроля по партнеру. В этом методе используют только монозиготных близнецов. Зная, что генотипы их одинаковы, можно точно оценить действие внешнего фактора на одного из них, при условии если другой не подвергается этому воздействию и служит контролем. Если монозиготные близнецы конкордантны по болезни, и один из них получает новый лечебный препарат, а другой служит "контролем", то это позволяет получить объективные сведения об эффективности препарата. Метод контроля по партнеру применяют в клинической генетике и фармакологии. 89.Цитогенетический метод генетики человека. Цитогенетический метод применяют для: изучения нормального кариотипа человека; диагностики хромосомных болезней; изучения мутагенного действия различных веществ при геномных и хромосомных мутациях; составления генетических карт хромосом. Чаще этот метод применяют в культуре тканей (лейкоцитов) (рис. 210). Их помещают в специальную питательную среду, где они делятся. После окраски в метафазе при делении клеток четко видно строение хромосом и их количество. Таким образом можно установить кариотип организма, поставить диагноз при хромосомных болезнях, связанных с хромосомными мутациями и геномными нарушениями. В интерфазных ядрах соматических клеток можно обнаружить тельце Барра или половой хроматин. Это генетически инактивированная Х-хромосома, которая всегда присутствует у женщин, и ее нет у мужчин. Проще всего изменение числа Х-хромосом можно обнаружить в эпителиальных клетках слизистой оболочки ротовой полости. После фиксации и окраски этих клеток определенными красителями, в них подсчитывают тельца Барра, или наблюдают их отсутствие (рис. 211).Х-хромосомы у мужчин обнаруживают с помощью люминисцентной микроскопии. 90.Молекулярно-генетический и биохимический методы. Биохимические методы применяют в диагностике наследственных болезней и наследственного предрасположения к ним. Если эти заболевания вызваны генными мутациями, то обычно сопровождаются нарушением всех типов обмена веществ. Установлено около 500 болезней обмена веществ. Наследственная патология, связанная с нарушениями в ферментативных системах, вызвана рецессивными генами, а затрагивающая структурные белки -доминантными генами. Если рецессивный ген отвечает за проявление патологического признака, то у гетерозигот может наблюдаться отклонение в обмене веществ. "Например, при фенилкетонурии у гетерозигот признак не проявляется, но после приема фенилаланина обнаруживается повышенное содержание его в крови, по сравнению с доминантными гомозиготами. Наследственные нарушения обмена веществ почти всегда сопровождаются изменением содержания метаболитов не только в тканях, но и в биологических жидкостях. 91.Сравнительно-генетический метод и метод гибридизации соматических клеток в генетике человека. Соматические клетки несут в себе весь объем генетической информации, дает возможность изучать на них генетические закономерности всего организма. Основу метода составляет культивирование отдельных соматических клеток человека и получение из них клонов, а так же их гибридизацию и селекцию. Соматические клетки обладают рядом особенностей: - быстро размножаются на питательных средах; - легко клонируются и дают генетически однородное потомство; - клоны могут сливаться и давать гибридное потомство; - легко подвергаются селекции на специальных питательных средах; - клетки человека хорошо и долго сохраняются при замораживании. Соматические клетки человека получают из разных органов — кожи, костного мозга, крови, ткани эмбрионов. Однако чаще всего используют клетки соединительной ткани (фибробласты) и лимфоциты крови. С помощью метода гибридизации соматических клеток: а) изучают метаболические процессы в клетке; б) выявляют локализацию генов в хромосомах;в) исследуют генные мутации; г) изучают мутагенную и канцерогенную активность химических веществ. |