Главная страница
Навигация по странице:

  • 16.Изменчивость. Формы изменчивости: фенотипическая и генотипическая, их значение в онтогенезе и эволюции.

  • Био. 1. Предмет, задачи, методы генетики. История развития генетики. Роль отечественных ученых (Н. К. Кольцов, А. С. Серебровский, С. С. Четвериков) в развитии генетики


    Скачать 428 Kb.
    Название1. Предмет, задачи, методы генетики. История развития генетики. Роль отечественных ученых (Н. К. Кольцов, А. С. Серебровский, С. С. Четвериков) в развитии генетики
    Дата01.12.2020
    Размер428 Kb.
    Формат файлаdoc
    Имя файлаBiologia_kollokvium_2 (1).doc
    ТипДокументы
    #155811
    страница4 из 9
    1   2   3   4   5   6   7   8   9

    15 Взаимосвязь между геном и признаком. Пример. Гипотеза «один ген - один фермент», ее современная трактовка.

    В 1902 году Арчибальд Гаррод, изучая наследственные болезни, связанные с дефектом обмена веществ, предположил, что за синтез определённого фермента отвечает один ген (гипотеза один ген – один фермент). Позднее Бидл и Татум экспериментально доказали это положение.

    В конце 40-х годов ученые установили, что синтез всех белков (а не только ферментов) находится под контролем генов. Гипотеза приобрела вид: один ген – один белок.

    Однако с открытием мультимерных белков (молекула таких белков состоит из нескольких полипептидных цепей) встал вопрос: один ген кодирует синтез всех цепей или каждая полипептидная цепь кодируется своим геном?

    В 1957г Ингрэм установил, что причина серповидно-клеточной анемии – генная мутация, приводящая к замене в молекуле гемоглобина в 6 положении глутаминовой кислоты на валин.

    Белок гемоглобина человека (глобин) состоит из двух α-цепей и двух β- цепей. Замена аминокислоты всегда наблюдается только в β-цепи, а α-цепь остаётся нормальной. Следовательно, мутировавший ген кодирует только одну цепь, а вторая цепь кодируется другим геном. Позже выяснили, что гены, кодирующие α-цепь находятся в 16 хромосоме, а гены, кодирующие β-цепь находятся в 11 хромосоме.

    Гипотеза приобрела вид: один ген – одна полипептидная цепь.
    Открытия экзон-интронной организации эукариотических генов и возможности альтернативного сплайсинга показали, что одна и та же нуклеотидная последовательность первичного транскрипта может обеспечить синтез нескольких полипептидных цепей с разными функциями или их модифицированных аналогов. Например, в митохондриях дрожжей имеется ген box (или cob), кодирующий дыхательный фермент цитохром b. Он может существовать в двух формах (рис. 3.42). «Длинный» ген, состоящий из 6400 п. н., имеет 6 экзонов общей протяженностью 1155 п. н. и 5 интронов. Короткая форма гена состоит из 3300 п. н. и имеет 2 интрона. Она фактически представляет собой лишенный первых трех интронов «длинный» ген. Обе формы гена одинаково хорошо экспрессируются.

    После удаления первого интрона «длинного» гена box на основе объединенной нуклеотидной последовательности двух первых экзонов и части нуклеотидов второго интрона образуется матрица для самостоятельного белка — РНК-матуразы (рис. 3.43). Функцией РНК-матуразы является обеспечение следующего этапа сплайсинга — удаление второго интрона из первичного транскрипта и в конечном счете образование матрицы для цитохрома b.

    Другим примером может служить изменение схемы сплайсинга первичного транскрипта, кодирующего структуру молекул антител в лимфоцитах. Мембранная форма антител имеет на С-конце длинный «хвост» аминокислот, который обеспечивает фиксацию белка на мембране. У секретируемой формы антител такого хвоста нет, что объясняется удалением в ходе сплайсинга из первичного транскрипта кодирующих этот участок нуклеотидов.

    У вирусов и бактерий описана ситуация, когда один ген может одновременно являться частью другого гена или некоторая нуклеотидная последовательность ДНК может быть составной частью двух разных перекрывающихся генов. Например, на физической карте генома фага ФХ174 (рис. 3.44) видно, что последовательность гена В располагается внутри гена А, а ген Е является частью последовательности гена D. Этой особенностью организации генома фага удалось объяснить существующее несоответствие между относительно небольшим его размером (он состоит из 5386 нуклеотидов) и числом аминокислотных остатков во всех синтезируемых белках, которое превышает теоретически допустимое при данной емкости генома. Возможность сборки разных пептидных цепей на мРНК, синтезированной с перекрывающихся генов (А и В или Е и D), обеспечивается наличием внутри этой мРНК участков связывания с рибосомами. Это позволяет начать трансляцию другого пептида с новой точки отсчета.

    Нуклеотидная последовательность гена В является одновременно частью гена А, а ген Е составляет часть гена D

    В геноме фага λ были также обнаружены перекрывающиеся гены, транслируемые как со сдвигом рамки, так и в той же рамке считывания. Предполагается также возможность транскрибирования двух разных мРНК с обеих комплементарных цепей одного участка ДНК. Это требует наличия промоторных областей, .определяющих движение РНК-полимеразы в разных направлениях вдоль молекулы ДНК.

    Описанные ситуации, свидетельствующие о допустимости считывания разной информации с одной и той же последовательности ДНК, позволяют предположить, что перекрывающиеся гены представляют собой довольно распространенный элемент организации генома вирусов и, возможно, прокариот. У эукариот прерывистость генов также обеспечивает возможность синтеза разнообразных пептидов на основе одной и той же последовательности ДНК.

    Имея в виду все сказанное, необходимо внести поправку в определение гена. Очевидно, нельзя больше говорить о гене как о непрерывной последовательности ДНК, однозначно кодирующей определенный белок. По-видимому, в настоящее время наиболее приемлемой все же следует считать формулу «Один ген — один поли-пептид», хотя некоторые авторы предлагают ее переиначить: «Один полипептид — один ген». Во всяком случае, под термином ген надо понимать функциональную единицу наследственного материала, по химической природе являющуюся полинуклеотидом и определяющую возможность синтеза полипептидной цепи, тРНК или рРНК.

    Один ген один фермент.

    В 1940 г Дж. Бидл и Эдвард Татум использовали новый подход для изучения того, как гены обеспечивают метаболизм у более удобного объекта исследований – у микроскопического грибка Neurospora crassa.. Ими были получены мутации, у которых; отсутствовала активность того-или иного фермента метаболизма. А это приводило к тому, что мутантный гриб бьл не способен сам синтезировать определенный метаболит (например, аминокислоту лейцин) и мог жить только тогда, когда лейцин был добавлен в питательную среду. Сформулированная Дж. Бидлом и Э. Татумом теория "один ген - один фермент" - быстро получила широкое признание у генетиков, а сами они были награждены Нобелевской Премией.

    Методы. селекции так называемых "биохимических мутаций", приводящих к нарушениям действия ферментов, обеспечивающих разные пути метаболизма, оказались очень плодотворными не только для науки, но и для практики. Сначала они привели к возникновению генетики и селекции промышленных микроорганизмов, а потом и к микробиологической промышленности, которая использует штаммы микроорганизмов, сверх продуцирующие такие стратегически важные вещества, как антибиотики, витамины, аминокислоты и др.. В основе принципов селекции и генной инженерии штаммов сверхпродуцентов лежит представление, что "один ген кодирует один фермент". И хотя это представление отлично практике приносит многомиллионные прибыли и спасает миллионы жизней (антибиотики) - оно не является окончательным. Один ген - это не только один фермент.

    16.Изменчивость. Формы изменчивости: фенотипическая и генотипическая, их значение в онтогенезе и эволюции.

    Изменчивость - это способность организма приобретать новые признаки в процессе онтогенеза. Изменчивость – свойство живых организмов существовать в разных формах. Групповая и индивидуальная изменчивость – классификация по эволюционному значению. Изменчивость, реализованная группой организмов, называется групповой, у одного организма или группы его клеток – индивидуальная.

    Изменчивость По характеру изменения признаков и механизму:

    --фенотипическая

    - случайная

    - модификационная

    --генотипическая

    - соматическая

    - генеративная (мутационная, комбинативная)

    а) генная

    б) хромосомная

    в) геномная

    Формы изменчивости

    1 Ненаследственная модификационная (фенотипическая)

    Изменение условий среды, в результате чего организм изменяется в пределах нормы реакции, заданной генотипом

    2 Наследственная (генотипическая) Мутационная

    Влияние внешних и внутренних мутагенных факторов, в результате чего происходит изменение в генах и хромосомах

    Комбинативная

    Возникает стихийно в рамках популяции при скрещивании, когда у потомков появляются новые комбинации генов

    3 механизма:

    Механизмы ее следующие: 1) рекомбинация генов при кроссинговере; 2) независимое расхождение хромосом и хроматид при мейозе; 3) случайное сочетание гамет при оплодотворении.

    Два из них связаны с мейозом. При кроссинговере аллельный состав хромосом половых клеток потомка изменяется в сравнении с таковы гамет родителей. В связи с неизвестным характером расхождения отцовских и материнских хромосом представлены одновременно хромосомы унаследованные от обоих родителей, третий механизм связан с оплодотворением. При случайном подборе гамет создается разнообразие сочетаний хромосом

    Соотносительная (коррелятивная)

    Возникает в результате свойства генов влиять на формирование не одного, а двух и более признаков

    Модификационная изменчивость отражает изменение фенотипа под воздействием факторов внешней среды (усиление и развитие мышечной и костной массы у спортсменов, увеличение эритропоэза в условиях высокогорья и крайнего севера).

    Мутационная изменчивость играет роль главного поставщика наследственных изменений. Именно она является первичным материалом всех эволюционных преобразований.

    Одним из распространенных видов мутаций, имеющий важное значение в эволюции растений, является полиплоидия.

    Хромосомные мутации также играют важную эволюционную роль. Прежде всего необходимо указать на удвоение генов в одной хромосоме. Именно благодаря удвоениям генов в процессе эволюции накапливается генетический материал. Нарастание сложности организации живого в ходе исторического развития в значительной степени опиралось на увеличение количества генетического материала.

    Генные мутации – наиболее частый тип мутаций. Мутации отдельных генов происходят редко. Большинство мутаций рецессивные, доминантные мутации возникают намного реже. Доминантные и рецессивные мутации ведут себя в популяциях по-разному. Доминантные мутации, даже если они находятся в гетерозиготном состоянии, проявляются в фенотипах особей уже первого поколения и подвергаются действию естественного отбора. Рецессивные же мутации проявляются в фенотипе только в гомозиготном состоянии.

    Рецессивная мутация, прежде чем она проявится в фенотипе гомозигот, должна накопиться в значительном количестве в популяции. Эту мысль первым высказал выдающийся советский генетик Четвериков.

    Он писал, что популяция, подобно губке, впитывает рецессивные мутации, оставаясь при этом фенотипически однородной. Существование такого скрытого резерва наследственной изменчивости создает возможность для эволюционных преобразований популяций под воздействием естественного отбора.

    Комбинативная изменчивость – это следствие перекреста гомологичных хромосом, их случайного расхождения в мейозе и случайного сочетания гамет при оплодотворении. Комбинативная изменчивость ведет к появлению бесконечно большого разнообразия генотипов и фенотипов. Она служит неиссякаемым источником наследственного разнообразия видов и основой для естественного отбора.

    Громадное генотипическое и, следовательно, фенотипическое разнообразие в природных популяциях является тем исходным эволюционным материалом, с которым оперирует естественный отбор.
    17. Модификации и их характеристики. Норма реакции признака. Фенокопии. Адаптивный характер модификаций.

    Модификационная (фенотипическая). Изменение условий среды, в результате чего организм изменяется в пределах нормы реакции, заданной генотипом

    Особенности модификационной изменчивости — не передается по наследству, так как не затрагивает гены и генотип, имеет массовый характер (проявляется одинаково у всех особей вида), обратима — изменение исчезает, если вызвавший его фактор прекращает действовать. Например, у всех растений пшеницы при внесении удобрений улучшается рост и увеличивается масса; при занятиях спортом масса мышц у человека увеличивается, а с их прекращением уменьшается.

    Норма реакции - диапазон модификационной изменчивости, в пределах которого в зависимости от условий среды меняется фенотип. норма реакции определяется генотипом от среды зависит, какая модификация в пределах нормы реакции реализуется у данной особи различают широкую норму реакциий узкую норму реакции широкая норма реакции дает больше модификаций ПР: у коровы количество молока в зависимости от условий кормления узкая норма реакции дает меньше модификаций ПР: у коровы жирность молока в зависимости от условий кормления, модификационная изменчивость может характеризоваться количественными признаками ПР: поэтому к модификационной изменчивости применимы статистические закономерности:

    Фенокопия, ненаследственное изменение фенотипа организма, вызванное действием определённых условий среды и копирующее проявление какого-либо известного наследственного изменения - мутации - у этого организма. Например, воздействуя на генетически нормальных эмбрионов и личинок некоторых насекомых повышенной температурой, парами эфира и т. п., можно вызвать ненаследственные уродства (изменение числа ног или крыльев, превращение усиков в лапки и др.), наблюдаемые у взрослых особей. Эти уродства являются Ф. таких же, но только наследственных изменений, которые регулярно развиваются без каких-либо внешних воздействий в ряде мутантных линий насекомых. Ф. различных мутаций могут быть вызваны экспериментально и у др. видов животных и растений. При этом спектр возникающих Ф. обычно не зависит от природы воздействующего фактора, а определяется стадией развития подопытного организма. Предполагают, что внешний фактор, вызывающий Ф. у нормальных особей, нарушает у них действие соответствующих нормальных генов, что и ведёт к появлению мутантного фенотипа. В связи с этим изучение Ф. широко применяется в исследованиях по феногенетике.

    Норма реакции-способность генотипа формировать в онтогенезе, в зависимости от условий среды, разные фенотипы

    Частный случай фенотипической изменчивости – фенокопии.

    Фенокопии – вызванные условиями внешней среды фенотипические модификации, имитирующие генетические признаки. Под влиянием внешних условий на генетически нормальный организм копируются признаки совсем другого генотипа. Проявление дальтонизма может произойти под влиянием питания, плохой психической конституции, повышенной раздражительности. У человека возникает заболевание витилиго (1% людей) – нарушение пигментации кожи. Генетический дефект есть у 30% болеющих, у остальных – профессиональное витилиго (воздействие на организм особых химических и отравляющих веществ). В Германии 15 лет назад рождались дети с фекомелией – укороченными ластовидными руками. Выяснилось. Что рождение таких детей происходило, если мать принимала Телидомид (успокоительное средство, показанное беременным). В результате нормальный немутантный генотип получал мутацию.

    Фенокопии появляются в большинстве случаев при действии внешней среды на ранних стадиях эмбриогенеза, что приводит к врожденным заболеваниями порокам развития. Наличие фенокопий затрудняет диагностику заболеваний.

    Норма реакции

    Предел проявления модификационной изменчивости организма при неизменном генотипе — норма реакции. Норма реакции обусловлена генотипом и различается у разных особей данного вида. Фактически норма реакции — спектр возможных уровней экспрессии генов, из которого выбирается уровень экспрессии, наиболее подходящий для данных условий окружающей среды. Норма реакции имеет предел для каждого вида — например, усиленное кормление приведет к увеличению массы животного, однако она будет находиться в пределах нормы реакции, характерной для данного вида или породы. Норма реакции генетически детерминирована и наследуется. Для разных изменений есть разные пределы нормы реакции. Например, сильно варьируют величина удоя, продуктивность злаков (количественные изменения), слабо — интенсивность окраски животных и т. д. (качественные изменения). В соответствии с этим норма реакции может быть широкой (количественные изменения — размеры листьев многих растений, размеры тела многих насекомых в зависимости от условий питания их личинок) и узкой (качественные изменения — окраска у куколок и имаго некоторых бабочек). Тем не менее, для некоторых количественных признаков характерна узкая норма реакции (жирность молока, число пальцев на ногах у морских свинок), а для некоторых качественных признаков — широкая (например, сезонные изменения окраски у многих видов животных северных широт).

    Фенотипические изменения, возникающие на основе одного и того же генотипа в разных условиях его реализации, называют модификациями. Примером модификаций могут служить изменения содержания жира в молоке животных или массы тела в зависимости от их питания, изменения количества эритроцитов в крови, в зависимости от парциального давления кислорода в воздухе, изменения темпа роста растений при разной освещенности и содержании минеральных веществ в почве. Другим примером модификационной изменчивости являются различия, наблюдаемые у генетически идентичных монозиготных близнецов или потомков одного растения, полученных путем вегетативного размножения, но развивавшихся в разных условиях среды.

    Модификации отдельного признака или свойства, формируемого данным генотипом, образуют непрерывный ряд. Частота встречаемости каждого варианта в таком вариационном ряду различна. Чаще обнаруживаются средние значения признака. Чем дальше признак отстоит от среднего значения, тем реже он наблюдается (рис. 6.1).

    18. Фенотип. Фенотип как результат реализации наследственной информации (генотипа) в определенных условиях среды. Значение средовых и генотипических факторов в формировании патологически измененного фенотипа человека.

    Фенотип – все признаки организма, формирующиеся в результате взаимодействия генотипа и среды. (Иогансен – 1803год) свойства любого организма зависят от генотипа и от среды, поэтому формирование организма – результат взаимодействия генетических факторов и факторов внешней среды. Фенотип (Phenotype) — присущая индивидууму совокупность всех признаков и свойств, которые сформировались в процессе его индивидуального развития. По характеру изменения признаков и механизму:

    --фенотипическая

    - случайная

    - модификационная

    Модификационная изменчивость отражает изменение фенотипа под воздействием факторов внешней среды (усиление и развитие мышечной и костной массы у спортсменов, увеличение эритропоэза в условиях высокогорья и крайнего севера).

    Фенотипическое проявление генотипа в зависимости Ио среды изменяется в пределах нормы реакции. От родителей потомки получают специфические типы химических реакций на разные условия среды. Совокупность всех химических реакций определят метаболизм – обмен веществ. Интенсивность обмена веществ варьирует в широких пределах. У каждого человека свои особенности обмена веществ, которые передается от поколения к поколению, и подчиняются законам Менделя. Различия в обмене веществ реализуются в конкретных условиях среды на уровне синтеза белка.

    Дифференцированная реакция растений примулы в разных условиях окружающей среды. При обычной температуре 20-25 градусов и нормальном давлении – красные цветы, при повышенной температуре или давлении – белые цветы. Семена обладают теми же свойствами.

    Муха – дрозофила имеет ген, формирующий замыкание крыльев на спину. Если мух с мутантным генов выводить при температуре22-25 градусов, крылья загнуты. При более низкой температуре – нормальные крылья и лишь у некоторых – загнуты. Ген обуславливает синтез термочувствительного белка. Поэтому, обсыхая после выхода из куколки, при повышенной температуре происходит деформация крыльев

    Фенотипические проявления хромосомных мутаций зависят от следующих

    главных факторов: 1) особенности вовлеченной в аномалию хромосомы (специфический набор генов); 2) тип аномалии (трисомия, моносомия, полная,частичная); 3) размер недостающего генетического материала при частичной моносомии или избыточного генетического материала при частичной трисомии; 4) степень мозаичности организма по аберрантным клеткам; 5) генотип организма; 6) условия среды.

    Изменение числа хромосом происходит в результате нерасхождения их в мейозе или при делении клеток на ранней стадии развития оплодотворённого яйца. Нерасхождению хромосом при первых делениях оплодотворённого яйца способствует, например, высокий возраст матери. Хромосомные аберрации (мутации, изменяющие структуру хромосом) обусловливаются физическими (ионизирующее излучение) и химическими (например, лекарственные препараты с мутагенным эффектом) факторами; вирусами (краснухи, вирусного гепатита, ветряной оспы и др.), антителами и различными расстройствами метаболизма. Хромосомные болезни могут быть связаны с излишком генетического материала (полисемия — наличие одной или нескольких добавочных хромосом; полиплоидия; дупликация); с утратой части генетического материала (нуллисомия, моносомия, делеция); с хромосомными перестройками (транслокация, различные перестановки участков хромосом).
    1   2   3   4   5   6   7   8   9


    написать администратору сайта