Изменчивость, формы изменчивости Изменчивость
Скачать 0.49 Mb.
|
Фенокопии — изменения фенотипа под влиянием неблагоприятных факторов среды, по проявлению похожие на мутации. Эти изменения проявляются только при определенных факторах (физических, химических или биологических), если воздействие прекращается, то фенотип возвращается к своему нормальному состоянию. Фенокопии сохраняются в течение всей жизни только тогда, когда преобразующий внешний фактор действует в период эмбрионального развития. Но и в таком случае изменённый признак не передаётся по наследству. В медицине фенокопии — ненаследственные болезни, сходные с наследственными. Распространенная причина фенокопий у млекопитающих — действие на беременных тератогенов различной природы, нарушающих эмбриональное развитие плода (генотип его при этом не затрагивается). При фенокопиях изменённый под действием внешних факторов признак копирует признаки другого генотипа (например, у человека приём алкоголя во время беременности приводит к комплексу нарушений, которые до некоторой степени могут копировать симптомы Синдрома Дауна). Пенетрантность характеризуется частотой или вероятностью проявления аллеля определенного гена и определяется процентом особей популяции, у которых он фенотипически проявился. Различают полную (проявление признака у всех особей) и неполную (у части) пенетрантность. Количественно пенетрантность выражается долей особей в процентах, у которых данный аллель проявляется. Так, например, пенетрантность врожденного вывиха бедра у человека составляет 25%, это указывает на то, что лишь у 1/4 генотипов, несущих определенный ген, проявляется его фенотипический эффект. В основе неполной пенетрантности лежит взаимодействие генетических и средовых причин. Знание пенетрантности определенных аллелей необходимо в медико-генетическом консультировании для определения возможного генотипа «здоровых» людей, в роду которых встречались наследственные болезни. К случаям неполной пенетрантности можно отнести проявления генов, контролирующих ограниченные полом и зависимые от пола признаки. Экспрессивность (англ. expressivity) — степень фенотипического проявления гена, как мера силы его действия, определяемая по степени развития признака. Экспрессивность у обоих полов может быть одинаковой или различной, постоянной или варьирующей, если выраженность признака при одинаковом генотипе колеблется от особи к особи. При отсутствии изменчивости признака, контролируемого данным аллелем, говорят о постоянной экспрессивности (однозначная норма реакции). Например, аллели групп крови ABO у человека практически имеют постоянную экспрессивность. Другой вид экспрессивности — изменчивая или вариабельная. В основе лежат различные причины: влияние условий внецгней среды (модификации), генотипической среды (при взаимодействии генов). Степень экспрессивности оценивается количественно с помощью статистических показателей. В случаях крайних вариантов изменения экспрессивности (полное отсутствие признака) используют дополнительную характеристику — пенетрантность. Хорея Гентингтона может служить примером неполной пенетрантности и варьирующей экспрессивности проявления доминантного гена. Возраст первого появления хореи Гентингтона разнообразен. Известно, что у некоторых носителей она так и не проявится (неполная пенетрантность), кроме того, этот ген имеет варьирующую экспрессивность, так как носители заболевают в различном возрасте. Модификационная изменчивость обеспечивает сравнительно быстрое формирование в ходе онтогенеза приспособлений организма к изменяющимся условиям внешней среды, способствуя, тем самым, выживанию организма. Следовательно, модификации являются важнейшим фактором нормального протекания и завершения онтогенеза живого организма. Несмотря на то, что модификации не наследуются потомством, модификационная изменчивость в целом имеет важное значение для эволюции органического мира. Модификации могут служить в ходе естественного отбора «прикрытием» для мутаций, фенотипическое проявление которых дублирует ненаследственные изменения. Благоприятствуя выживанию организмов, модификационная изменчивость способствует сохранению и участию в репродукции конкретных особей с разнообразными генотипами. Наряду с этим модификации способствуют освоению видом (популяцией) новых местообитаний, что ведёт к расширению ареала данной группы организмов. Все указанные эффекты модификаций благоприятствуют эволюционному успеху вида или популяции. 1 Мута́ция (лат. mutatio «изменение») — стойкое (то есть такое, которое может быть унаследовано потомками данной клетки или организма) изменение генома. Термин предложен Гуго де Фризом в 1901 году. Мутации делятся на спонтанные и индуцированные. Спонтанные мутации возникают самопроизвольно на протяжении всей жизни организма в нормальных для него условиях окружающей среды с частотой около 10(-9){\displaystyle 10^{-9}} — 10(-12){\displaystyle 10^{-12}} на нуклеотид за клеточную генерацию организма. Индуцированными мутациями называют наследуемые изменения генома, возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды. Мутации появляются постоянно в ходе процессов, происходящих в живой клетке. Основные процессы, приводящие к возникновению мутаций — репликация ДНК, нарушения репарации ДНК, транскрипции и генетическая рекомбинация. Мутацией (лат. mutatio - перемена) называют внезапные наследственные изменения генетического материала, возникающие без видимых причин (спонтанно), или могут быть индуцированы внешним воздействием на организм. Процесс возникновения мутаций называют мутагенезом. Факторы, способные вызвать мутации - мутагенами. Организм, приобретший новый признак в результате мутации и изменивший свой фенотип, называют мутантом. Мутации имеют следующие свойства: • они возникают внезапно, скачкообразно; • наследственны, т.е. передаются из поколения в поколение; • ненаправлены - может мутировать любой локус хромосом; • одни и те же мутации могут возникать повторно; • мутации могут быть полезными и вредными, доминантными и рецессивными. Доминантные мутации проявляются в фенотипе в 1-м поколении. Если доминантные мутации вредные и проявляются и в гомозиготном, и в гетерозиготном организмах, то очень часто организмы оказываются нежизнеспособными и погибают на ранних этапах онтогенеза. Большинство мутаций рецессивно, не проявляется у гетерозигот и способно накапливаться в генофонде видов, уклоняясь от действия естественного отбора. Мутации часто оказываются вредными, потому что способны нарушать ход биохимических реакций. При изменении условий внешней среды некоторые ранее вредные рецессивные мутации могут оказаться полезными, и организмы, имеющие их, получат преимущества при естественном отборе. Мутации, не совместимые с жизнью, называют летальными. Мутации, резко снижающие жизнеспособность, называются полулетальными. Например, ген гемофилии, ген серповидно - клеточной анемии, определяющие синтез аномального гемоглобина. По месту возникновения мутации бывают генеративными (возникают в половых клетках и проявляются в следующих поколениях) и соматическими (возникают у данного организма, не передаются по наследству при половом размножении и передаются при бесполом). Соматические мутации возникают часто и остаются незамеченными, но если в некоторых случаях при этом образуются клетки с повышенной скоростью роста и деления, то они могут дать начало опухолям (рис. 171). По уровню возникновения мутации могут быть связаны с изменением: • структуры гена - генные; • структуры хромосом - хромосомные перестройки; • числа хромосом (полиплоидия, гетероплоидия) - геномные. 4.3.10.2.2.1. ГЕННЫЕ МУТАЦИИ Генные мутации образуются наиболее часто и затрагивают структуру гена. Ген - участок молекулы ДНК. Генные мутации возникают при изменении химической структуры гена. Это происходит в результате замены одной или нескольких пар азотистых оснований, или мутаций со сдвигом рамки считывания информации, связанных с выпадением или вставкой одного или нескольких азотистых оснований - нормальная последовательность нуклеотидов, 2 - замена пары "Ц-Г" на пару "А-Т", 3 - вставка пары "Т-А", 4 - потеря блока из шести пар оснований. Мутации, затрагивающие одну пару оснований и приводящие к замене на другую, удвоению, делеции, называют точковыми. Происходит нарушение последовательности нуклеотидов в молекуле ДНК. Это приводит к изменению строения белка. Генные мутации возникают при замене, выпадении, вставке пар нуклеотидов. Большинство мутаций - генные. С ними связаны изменения морфологических, биохимических, физиологических признаков. При замене одного пуринового основания на другое или одного пиримидинового на другое возникают транзиции: А<=>Г, Т<=>Ц. Возможны четыре типа транзиции. Транзиции возникают при репликации ДНК. Могут также меняться пиримидиновые основания на пуриновые и наоборот. Такие замены называют трансверсиями. Их восемь типов: А<=>Т, А<=>Ц, Г<=>Ц, Г<=>Т. Замены оснований приводят к появлению двух типов мутантных кодонов в и-РНК с измененным смыслом (миссенс - кодон) и бессмысленного (нонсенс - кодон). В результате миссенс - мутации может быть заменена одна аминокислота на другую. Это приводит, например, к появлению аномального гемоглобина при серповидно-клеточной анемии, когда в молекуле гемоглобина глутаминовая кислота заменена валином. В результате такого изменения гемоглобин 5 кристаллизуется при более низкой контцентрации кислорода. В венозной крови эритроциты с таким гемоглобином деформируются, становятся серповидными и быстро разрушаются. У человека развивается анемия. Снижается количество кислорода, переносимого кровью. Люди, гомозиготные по мутантному рецессивному аллелю, быстро погибают. У гетерозигот развивается анемия в слабой форме. Аномальный гемоглобин составляет 40%. Носители аллеля серповидно-клеточной анемии невосприимчивы к малярии. -185- В результате генных мутаций возникают новые аллели или целые серии мутаций и появляются множественные аллели. Миссенс - мутации могут влиять на активность ферментов и приводить к синтезу менее активных ферментов или снижать их количество. Генные мутации способны привести к появлению заболеваний, связанных с нарушением обмена веществ. Например, заболевание фенилкетонурия возникает при рецессивной генной мутации, приводящей к отсутствию активности фермента фенилаланингидроксилазы. Фенилкетонурия наследуется аутосомно - рецессивно. Ген мутантного фермента находится в одной из аутосом, т.е. болеют и мальчики, и девочки. Заболевание проявляется только у гомозигот, имеющих ген фенилкетонурии в обеих гомологичных хромосомах. Если родители гетерозиготны по гену фенилкетонурии, то может родиться больной ребенок. Заболевание встречается с частотой 1:7000 родившихся детей. При фенилкетонурии в результате генетического дефекта фермента происходит накопление в организме большого количества фенилаланина и фенилпировиноградной кислоты. С помощью специальных химикатов у новорожденных детей можно обнаружить в моче фенилпировиноградную кислоту или повышенное содержание фенилаланина в крови. При фенилкетонурии наблюдаются умственная отсталость и замедленное психическое развитие ребенка, поэтому необходима ранняя диагностика заболевания. Раннее выявление заболевания и исключение из питания продуктов, содержащих фенилаланин, спасают ребенка от тяжелых осложнений. У человека известно не менее 120 заболеваний, связанных с генными мутациями. Обычно это врожденные дефекты различных ферментов, при участии которых протекают биохимические реакции в организме. Фенилкетонурия - пример ферментопатии. К заболеваниям, связанным с нарушением обмена аминокислот, относят гистидинемию. При этом заболевании имеется врожденный дефект фермента гистидазы, расщепляющей гистидин. В организме накапливается большое количество гистидина и продуктов его распада. Это заболевание сопровождается умственной отсталостью, неразборчивой речью, снижением пигментации кожи и волос. Есть мутации генов ферментов углеводного обмена, приводящие к появлению заболеваний, именуемых гликогенозами. Эти заболевания развиваются в результате генетических дефектов различных ферментов, участвующих в распаде гликогена. При гликогенозах наблюдается избыточное отложение гликогена в скелетной мускулатуре, сердечной мышце или печени. При некоторых формах гликогенозов может развиваться умственная отсталость, мышечная слабость и печеночная недостаточность. Генные мутации бывают причиной ненормального обмена жиров и жироподобных веществ. Заболевания, именуемые липидозами, сопровождаются -186- тяжелой умственной отсталостью, нарушением функций нервной системы. Иногда встречаются наследственные дефекты обмена нуклеиновых кислот. При заболевании оротовой ацидурией происходит блокада в системе пиримидиновых нуклеотидов. Мутанты, гомозиготные по данному гену, гибнут внутриутробно, Дети с этим заболеванием умственно отсталы. В их органах и тканях есть отложения оротовой кислоты. Генетический дефект синтеза пуриновых оснований - причина синдрома Леш - Найхана, который передается сцепленно с полом. Болеют только мальчики. При этом в почках и других тканях накапливается мочевая кислота и возникает подагра. Нонсенс - мутации приводят к тому, что может появиться нонсенс - кодон не в конце структурного гена, а раньше, что приводит к обрыву полипептидной цепи. Мутации со сдвигом рамки (фреймшифт), обусловленные вставками или выпадениями одного или нескольких нуклеотидов, напоминают нонсенс - мутации, т.к. приводят к образованию нонсенс - кодонов. В результате генных мутаций может измениться смысл биологической информации, закодированной в генах. Если условия обитания меняются мало, то возникшие мутации обычно снижают выживаемость вида. Если условия обитания меняются, то наличие мутантных особей может быть полезным. Появление мутаций связано с нарушением структуры молекулы ДНК. Процесс реконструкции поврежденной ДНК называют восстановлением или репарацией ДНК (рис. 173). Репарация наследственного материала заключается в ферментативном разрушении измененного участка молекулы ДНК с восстановлением на этом участке последовательности нуклеотидов, комплементарной фрагменту неповрежденной молекулы ДНК. ХРОМОСОМНЫЕ ПЕРЕСТРОЙКИ Хромосомные перестройки возникают в результате разрыва хромосомы. Перестройки могут быть внутрихромосомными и межхромосомными. Хромосомные мутации изменяют дозу генов, вызывают перераспределение генов между группами сцепления, меняют локализацию их в группе сцепления. Внутрихромосомные перестройки, связанные с утратой части хромосомы, называют делениями. Концевые делеции называют дефишенси или нехватки. Они связаны с утратой теломерного участка хромосомы. Интерстициальные делеции образуются в результате выпетливания внутреннего участка хромосомы. -189- Перестройки, приводящие к удвоению генетического материала, называют дупликациями. Дупликациям предшествуют делеции в идентичных участках хромосом. Дупликации могут возникнуть при неравном кроссинговере, если разрывы хромосом происходят не в идентичных участках хромосом, то тогда обмен будет иметь место в неравных участках. В результате такого обмена локус гена в одной из гомологичных хромосом может удваиваться, а в противоположной хромосоме образуется его нехватка. Дупликации и делеции приводят к изменению дозы генов. Перестройки, в основе которых также лежит образование петли с последующим поворотом выпетленного участка на 180° и соответствующим изменением порядка расположения генов, называют инверсией. К перестройкам могут быть отнесены также транслокации - перемещения участков на другие места хромосомы или обмен участками между различными хромосомами. У человека известна делеция 5-й хромосомы. Эта делеция выражается в синдроме "кошачьего крика". Делеция, укорочение на 1/3 короткого плеча 5-й хромосомы, приводит к тому, что у новорожденного имеется много аномалий, умственная отсталость, крик похож на кошачий (рис. 175). -190- Рис. 175. Больной с синдромом "кошачьего крика" (Macintyre и др., 1964). Описаны делеции и по другим хромосомам (рис. 176). Их наличие приводит к порокам развития и летальному исходу. Рис. 176. Ребенок с делецией длинного плеча 18-й хромосомы (Macintyre и др., 1965). Дупликации могут возникать по всем хромосомам. В результате этого появляются пороки развития, снижающие жизнеспособность организма. Например, дупликация участка 9-й хромосомы может привести к порокам мозговой и лицевой частей черепа и других костей, порокам сердца и различных органов. В случае инверсии участок хромосомы разворачивается на 180°, и разорванные концы соединяются в новом порядке. Если в инвертированный участок попадает центромера, то такую инверсию называют перицентрической. Если инверсия затрагивает только одно плечо хромосомы, то она называется парацентрической. Гены в инвертированном участке хромосомы располагаются в обратном, по отношению к исходному в хромосоме, порядке. К межхромосомным перестройкам относят транслокации - обмен сегментами между хромосомами (рис. 177). -191- Рис. 177. Филадельфийская (Рh) хромосома у больного с хроническим миелоидным лейкозом. А - транслокация между 22-й и 9-й хромосомами: Аб - аберрантная хромосома, Б - схематическое изображение исходных хромосом и продуктов транслокации. Различают несколько типов транслокаций: • реципрокная транслокация, когда две хромосомы взаимно обмениваются сегментами; • нереципрокная транслокация, когда сегменты одной хромосомы переносятся в другую; • транслокация типа центрического соединения, когда после ржрывов в околоцентромерном районе соединяются два фрагмента с центромерами таким образом, что их центромеры соединяются, образуя одну. Синдром Дауна может быть примером такой транслокации. В кариотипе у больных насчитывается 46 хромосом. Транслокация с 21-й хромосомы на 15-ю (рис. 178). -192- Рис. 178. Дети с синдромом Дауна. Л - европеоид, Б - негр, В - представитель азиатской расы. Общие признаки синдрома Дауна более заметны, чем расовые различия (С). Транслокационная форма характерна для синдрома Эдвардса, но встречается очень редко. Транслокационная форма характерна и для синдрома Патау, когда в кариотипе больного имеется 46 хромосом. Это происходит чаще всего в результате слияния двух хромосом (13-15). Средний возраст матерей, родивших детей с транслокацией хромосом, не превышает 25 лет. Внешний вид больных с синдромом Патау специфичен. Больные новорожденные имеют нормальные размеры и массу тела. Клинически отмечается резкая умственная отсталость, выраженная микроцефалия, неправильно сформированные и низко расположенные уши, аномалии глазного яблока, незаращение губы и неба, полидактилия, врожденные пороки сердечно-сосудистой и мочеполовой систем, желудочно-кишечного тракта. Пороки сильно выражены, и дети быстро умирают. 4.3.10.2.2.3. ГЕНОМНЫЕ МУТАЦИИ Мутации, связанные с изменением числа хромосом, называют геномными. Совокупность взаимодействующих генов в гаплоидном наборе хромосом клеток организма называют геномом. Геномными мутациями обусловлено появление полиплоидных организмов, когда происходит нарушение кратности полного гаплоидного набора хромосом (триплоидии, тетраплоидии, когда каждая клетка организма содержит не два, а три, четыре гаплоидных набора) или изменение в одной из пар хромосом в сторону утраты гомолога (моносомия) или приобретения дополнительного (трисомия, тетрасомия). В основе численных хромосомных изменений лежат нарушения в расхождении хромосом при клеточном делении. Нерасхождение хромосом может возникнуть во время гаметогенеза, или при первых делениях оплодотворенной яйцеклетки. К геномным мутациям относят гаплоидию, полиплоидию, анеуплоидию (гетероплоидию). Гаплоидные организмы имеют по одной хромосоме каждой гомологичной пары, все рецессивные гены проявляются в фенотипе. -193- Жизнеспособность организмов снижена. У человека описаны триплоидные и тетраплоидные организмы. Частота их возникновения низка. Они обнаруживаются среди спонтанно абортированных эмбрионов или плодов и у мертворожденных. Продолжительность жизни новорожденных с такими нарушениями - несколько дней. Геномные мутации по отдельным хромосомам многочисленны. Моносомии могут быть по Х - хромосоме, что приводит к развитию синдрома Шерешевского- Тернера (45 хромосом = 44 аутосомы + ХО) (рис. 179). Рис. 179. Моносомия Х (синдром Шерешевского-Тернера) и кариограмма при этом нарушении. В период созревания гамет наблюдаются случаи нерасхождения половых хромосом (в I, II или в обоих делениях созревания). Гаметы несут не 22 аутосомы + 1 половую хромосому (X или У), а возникает нарушение парности хромосом. Моносомия Х зависит исключительно от отца. Для женщин с синдромом Шерешевского-Тернера характерны маленький рост, короткая шея, воронкообразная грудина, бесплодие вследствие недоразвития яичников, слабое развитие половых признаков. 50% больных умственно отсталы или нормальны. Могут быть пороки развития внутренних органов. Дети с синдромом Шерешевского-Тернера рождаются с частотой 0,7 на 1000 новорожденных девочек. -194- Диагноз ставят при исследовании полового хроматина и на основании результатов цитогенетического анализа. Аутосомные моносомии среди живорожденных очень редки. Это мозаичные организмы с нормальными клетками. Моносомия касается аутосом 21 и 22. Полные трисомии описаны по большому числу хромосом: 8, 9, 13, 14, 18, 21, 22 и Х. Число Х-хромосом у человека может доходить до 5 с сохранением жизнеспособности (рис. 180, 181). Рис. 180. Фенотип ХХХХ женщины (Сагг и др., 1961). Рис. 181. Метафазная пластинка и кариотип ХХХХ женщины (Сагг и др., 1961). Изменение числа хромосом вызвано нарушением распределения их по дочерним клеткам во время 1-го или 2-го мейотического деления в гаметогенезе или при первых дроблениях оплодотворенной яйцеклетки. Нарушения возникают: • при расхождении во время анафазы редуплицированной хромосомы, в результате чего удвоенная хромосома попадает только в одну дочернюю клетку; • при нарушении конъюгации гомологичных хромосом, что может нарушить правильность расхождения гомологов по дочерним клеткам; • при отставании хромосом в анафазе при их расхождении в дочерние клетки, что может привести к утрате хромосомы Комбинативная изменчивость и ее типы Комбинативная изменчивость — появление новых сочетаний признаков при скрещивании, в результате которого возникает огромный набор разнообразных генотипов, которые отсутствовали у родительских особей. Комбинационная изменчивость связана с рекомбинацией генов вследствие слияния гамет. Основными процессами, которые ответственны за реализацию комбинативной изменчивости, являются независимое расхождение хромосом во время мейоза, случайное сочетание хромосом во время оплодотворения, рекомбинация генов вследствие кроссинговера. Она позволяет особям приспосабливаться к условиям среды. Комбинативная изменчивость используется в селекционной практике для создания новых пород животных и сортов растений. Это происходит путём подбора, который позволяет получить ценные наследственные сочетания, уменьшить недостатки одного из родителей и усилить положительные качества другого. Большую роль комбинативная изменчивость играет в эволюции. Комбинативная изм. - изменчивость, возникающая при скрещивании в результате различных комбинаций генов и их взаимодействия между собой. При этом структура гена не меняется. Механизмывозникновения комбинативной изменчивости: кроссинговер; независимое расхождение хромосом в мейозе; случайное сочетание гамет при оплодотворении. Она наследуется согласно правилам Менделя. На проявление признаков при комбинативной изменчивости оказывают влияние взаимодействие генов из одной и разных аллельных пар, множественные аллели, плейотропное действие генов, сцепление генов, пенетрантность и экспрессивность гена и т.д. Благодаря комбинативной изменчивости обеспечивается большое разнообразие наследственных признаков у человека. На проявление комбинативной изменчивости у человека будет оказывать влияние система скрещивания или система браков: инбридинг и аутбридинг. Инбридинг – родственный брак, который может быть в разной мере тесным. Брак братьев с сестрами или родителей с детьми называется первой степени родства и является наиболее тесным. Менее тесный - между двоюродными братьями и сестрами или племянниками с детьми или тетками. Первое важное генетическое следствие инбридинга - повышение с каждым поколением гомозиготности потомков по всем независимо наследуемым генам. Второе - разложение популяции на ряд генетически различных линий. Изменчивость инбридируемой популяции будет возрастать, тогда как изменчивость каждой выделяемой линии снижается. Инбридинг часто ведет к ослаблению и даже вырождению потомков. У человека инбридинг: как правило, вреден. Это усиливает риск заболевания и преждевременной смерти потомков. Но известны примеры длительного тесного инбридинга, не сопровождающиеся вредными последствиями, например, родословная фараонов Египта. Поскольку изменчивость любого вида организмов в каждый данный момент представляет конечную величину, ясно, что число предков в каком-то поколении должно бы превысить численность вида, что невозможно. Отсюда вытекает, что среди предков происходили браки в той или иной степени родства, вследствие чего фактическое число разных предков сокращалось. Это можно показать на примере человека. У человека за столетие рождается в среднем 4 поколения. Значит, 30 поколений назад, т.е. около 1200 г. н.э. у каждого из нас должно быть 1 073 741 824 предка. Фактически же численность в ту пору не достигала 1 млрд. Приходится заключить, что в родословной каждого человека много раз встречались браки между родственниками, хотя в основном настолько отдаленными, что они не подозревали о своем родстве. На самом деле такие браки встречались гораздо чаще, чем следует из приведенного соображения, т.к. на протяжении большей своей части истории человечество существовало в форме изолированных друг от друга народов и племенных групп. Поэтому братство всех людей представляет собой действительно реальный генетический факт. 3 Группы инбридинга: Запретные - первая степень родства, сейчас в подобные браки в вступают псих больные люди Браки в изолированных популяциях имеют близкородственный характер. Кровно родственные браки (троюродные). Поэтому в популяциях людей имеют место отклонения от панмиксии в двух направлениях: Люди, состоящие между собой в родстве, вступают в брак чаще, чем при случайном подборе – инбридинг – инбирентные (кровнородственные браки). Люди вступают в брак чаще при случайном подборе пар, чем при родственном бракосочетании – аутобридинг. Инбридные браки имеют большое значение в медицинском плане. Т.к. вероятность того, что оба супруга обладают одинаковыми рецессивными генами гораздо выше, если супруги состоят между собой в родстве, особенно близком. Родство закономерно. С медицинской точки зрения близкими по генетическому эффекту считаются избирательные браки по фенотипическому признаку. Если выбор брачного партнера оказывает влияние на генотип потомка – ассортивные браки. Люди, схожие фенотипические, чаще вступают в брак, чем при случайной подборке пар – положительные ассортивные браки, если реже – отрицательные. Примерами могут служить браки между глухонемыми, людьми высокого роста, людей с одинаковым цветом кожи. Отрицательные ассортивные браки между рыжеволосыми людьми. Близкородственные браки часто встречались на ранних этапах развития человечества. Выделяют 3 группы инбридинга: между родственниками первого родства близкородственные браки изолированных популяций поощряемые близкородственные браки по социальным, религиозным и другим соображениям. Инцестные (запретные) браки между родственниками первого родства: мать-сын, отец-дочь, брат-сестра. Имели место в Египте, династии Птолемеев. В ряде восточных стран, род Ивана Грозного (начиная с Ивана Калиты – несколько подобных браков). Правовые ограничения: браки между двоюродными родственниками, племянниками и тетями, племянницами и дядями - разрешены. Хотя в некоторых странах есть ограничения. США и Великобритании – дядя-племянница, полудядя-племянница – запрещены. В США двоюродные – запрещены, в Великобритании – разрешены. Близкородственные браки в изолированных территориях (изолятах), в т.ч. и религиозных изолятах, неизбежны, потому что в противном случае популяция вымирает. Генетический эффект близкородственных браков: редкие аутосомно-рецесивные заболевания становятся обычными. Частота встречаемости рецессивных генов по сравнению с браками, заключенными между людьми, не являющимися родственниками, резко возрастает в браках между родственниками. Аутбридинг – неродственный брак. Неродственными особями считаются - если нет общих предков в 4-6 поколениях. Аутбридинг повышает гетерозиготность потомков, объединяет в гибридах аллели, которые существовали у родителей порознь. Вредные рецессивные гены, находившие у родителей в гомозиготном состоянии, подавляются у гетерозиготных по ним потомков. Возрастает комбинация всех генов в геноме гибридов и соответственно широко будет проявляться комбинативная изменчивость. Комбинативная изменчивость в семье касается как нормальных, так и патологических генов, способных присутствовать в генотипе супругов. При решении вопросов медико-генетических аспектов семьи требует точного установления типа наследования заболевания - аутосомно-доминантного, аутосомно-рецессивного или сцепленного с полом, в противном случае прогноз окажется неверным. При наличии рецессивного гетерозиготного аномального гена вероятность заболевания ребенка - 25%. Частота синдрома Дауна у детей матерей возраста 35 лет - 0, 33%, 40 лет и старше - 1,24%. Мутационная изменчивость Мутационная изменчивость — изменчивость, вызванная действием на организм мутагенов, вследствие чего возникают мутации (реорганизация репродуктивных структур клетки). Мутагены бывают физические, химические и биологические. Мутационная изменчивость создаёт новые гены или изменяет уже имеющиеся, тем самым обогащая генофонд популяции. Мутация каждого отдельного гена в природе возникает редко. Но количество генов в генотипе большое (у высших форм, например, их десятки тысяч). Особей в популяции много, и существует она продолжительное время. Мутационная изменчивость - это такой тип изменчивости, при которой происходит скачкообразное, прерывистое изменение наследственного признака. Мутации - это внезапно возникающие стойкие изменения генетического аппарата, включающие как переход генов из одного аллельного состояния в другое, так и различные изменения структуры генов, числа и структуры хромосом, плазмогенов цитоплазмы. Термин мутация впервые был предложен де Фризом в его труде «Мутационная теория» (1901-1903). Основные положения этой теории: 1. Мутации возникают внезапно, новые формы вполне устойчивы. 2. Мутации являются качественными изменениями. 3. Мутации могут быть полезными и вредными. 4. Одни и те же мутации могут возникать повторно. |