Главная страница
Навигация по странице:

  • Классификация изолирующих электрозащитных средств

  • вариант 9. 1. Рациональная организация рабочего места. Требования безопасности к производственным помещениям отрасли


    Скачать 247.64 Kb.
    Название1. Рациональная организация рабочего места. Требования безопасности к производственным помещениям отрасли
    Дата14.06.2019
    Размер247.64 Kb.
    Формат файлаdocx
    Имя файлавариант 9.docx
    ТипДокументы
    #81709
    страница1 из 6
      1   2   3   4   5   6

    1.Рациональная организация рабочего места. Требования безопасности к

    производственным помещениям отрасли.

    Рабочее место — первичное звено производства, находящееся в непосредственном ведении одного рабочего или бригады и включающее в себя комплект материальных элементов, обеспечивающих процесс труда. Рабочее место состоит из следующих элементов: производственной площади; основного оборудования; устройств для хранения материалов, заготовок, готовой продукции, отходов и брака; устройства для хранения инструментов, оснастки и приспособлений; подъемно-транспортных устройств; приспособлений для безопасности и удобства работы.

    Организация рабочего места — это комплекс мероприятий, направленных на создание на рабочем месте необходимых условий для высокопроизводительного труда, на повышение его содержательности и охрану здоровья рабочего.

    Комплекс мероприятий охватывает: выбор рациональной сигнализации рабочего места и его оснащение оборудованием и инвентарем; создание комфортных условий труда; рациональную планировку; бесперебойное обслуживание рабочего места по всем его функциям.

    Конкретное содержание работ по рациональной организации рабочих мест зависит, в свою очередь, от многих факторов: вида труда — умственный или физический, тяжелый или легкий, разнообразный или монотонный; условий труда — комфортные или неблагоприятные; типа производства и др.

    Здоровый и производительный труд возможен только при хорошем содержании рабочего места, его правильной организации. Удобная рабочая поза, отсутствие суеты, лишних движений, уют в помещении важны для производительности труда, для борьбы с преждевременным утомлением.

    На работоспособность человека существенное влияние оказывает микроклимат рабочего помещения.

    Основными гигиеническими требованиями являются создание в рабочем помещении оптимального микроклимата и достаточная устойчивость внутренней температуры. Разница температуры в горизонтальном направлении от окон до противоположных стен не должна превышать 2 °С, а в вертикальном – 1 °С на каждый метр высоты помещения.

    Уровень температуры может быть снижен до 8–15 °С там, где работа связана с постоянным передвижением и переноской тяжестей или там, где имеет место значительное излучение тепла. В летнее время температура в рабочем помещении не должна превышать температуру наружного воздуха на 3–5 °С, а в жаркую погоду, чтобы она была ниже, чем снаружи. Работоспособность снижается и при очень низкой, и при очень высокой влажности.

    Свет – сильный стимулятор работоспособности. Освещение считается достаточным, если оно позволяет длительное время без напряжения работать и не вызывает при этом утомления глаз. При пользовании люминесцентными лампами (лампами дневного света), зрительное утомление наступает позже, чем при обычных лампах накаливания, а производительность труда повышается.

    Цвет окружающих предметов, окраска стен оказывают существенное влияние на работоспособность человека. Красные краски с золотистым оттенком – теплые – оказывают бодрящее, возбуждающее действие, а синие, зелено-голубые, напротив, успокаивающее, располагающее к отдыху, к покою, способствующее сну. Вещи, окрашенные в темный цвет, кажутся более тяжелыми, чем светлые, поэтому станки и машины рекомендуется окрашивать в приятные светлые тона.

    Отрицательное влияние на здоровье и работоспособность оказывает шум. Воздействие длительного и очень интенсивного шума (свыше 80 дБ) неблагоприятно отражается на нервной системе, могут развиваться тугоухость и глухота.

    Стандарты на общие требования безопасности к производственному оборудованию устанавливают требования безопасности к конструкции оборудования в целом и его отдельным элементам. Методы контроля выполнения требований безопасности содержат требования безопасности размещения элементов технологических систем, режимов работы производственного оборудования, систем управления и режима труда персонала, требования по применению средств защиты, стандарты на нормы и общие требования по видам опасности, устанавливают предельно допустимые концентрации, уровни или дозы вредных веществ и требования безопасности при работе с веществами, которые выделяют опасные и вредные пары.

    2.Нормирование негативных факторов. Вредные вещества.

    Негативные факторы подразделяют на: вредные вещества, вибрации, акустические колебания, электромагнитные поля и излучения, ионизирующие излучения, электрический ток.

    Вредные вещества. Вредным называется вещество, которое при контакте с организмом человека может вызывать травмы, заболевания или отклонения в состоянии здоровья, обнаруживаемые современными методами как в процессе контакта с ними, так и в отдаленные сроки жизни настоящего и последующих поколений.

    Ядовитые свойства могут проявить все вещества, даже такие, как поваренная соль в больших дозах или кислород при повышенном давлении. Однако к ядам принято относить лишь те, которые свое вредное действие проявляют в обычных условиях и относительно небольших концентрациях.

    Токсическое действие вредных веществ характеризуется показателями токсикометрии, в соответствии с которыми вещества классифицируют на чрезвычайно токсичные, высокотоксичные, умеренно токсичные и малотоксичные. Эффект токсического действия различных веществ зависит от количества попавшего в организм вещества, его физических свойств, длительности поступления, химизма взаимодействия с биологическими средами (кровью, ферментами). Кроме того, эффект зависит от пола, возраста, индивидуальной чувствительности, путей поступления и выведения, распределения в организме, а также метеорологических условий и других сопутствующих факторов окружающей среды.

    Показатели токсиметрии и критерии токсичности вредных веществ – это количественные показатели токсичности и опасности вредных веществ. Токсический эффект при действии различных доз и концентрации ядов может проявиться функциональными и структурными (патоморфологическими) изменениями или гибелью организма. В первом случае токсичность принято выражать в виде действующих пороговых и недействующих доз и концентраций, во втором – в виде смертельных концентраций.

    Отравления протекают в острой, подострой и хронической формах.

    Острые отравления часто бывают групповыми и происходят в результате аварий, поломок оборудования и грубых нарушений требований безопасности труда; они характеризуются кратковременностью действия токсичных веществ, не более чем в течение одной смены; поступлением в организм вредного вещества в относительно больших количествах – при высоких концентрациях в воздухе; ошибочном приеме внутрь; сильном загрязнении кожных покровов.

    Хронические отравления возникают постепенно, при длительном поступлении яда в организм в относительно небольших количествах. Отравления развиваются вследствие накопления массы вредного вещества в организме (материальной кумуляции) или вызываемых ими нарушений в организме (функциональная кумуляция). Хронические отравления органов дыхания могут быть следствием перенесенной однократной или нескольких повторных острых интоксикаций. К ядам, вызывающим хронические отравления в результате только функциональной кумуляции, относятся хлорированные углеводороды, бензол, бензин и др.

    Сенсибилизация – состояние организма, при котором повторное воздействие вещества вызывает больший эффект, чем предыдущий. Эффект сенсибилизации связан с образованием в крови и других внутренних средах измененных и ставших чужеродными для организма белковых молекул, индуцирующих формирование антител. К веществам, вызывающим сенсибилизацию, относятся бериллий и его соединения, карбонилы никеля, железа, кобальта и т.д.

    Биологическое действие вредных веществ осуществляется через рецепторный аппарат клеток и внутриклеточных структур. Во многих случаях рецепторами токсичности являются ферменты, аминокислоты, витамины, некоторые активные функциональные группы, а также различные медиаторы и гормоны, регулирующие обмен веществ. Первичное специфическое действие вредных веществ на организм обусловлено образованием комплекса «вещество – рецептор». Токсическое действие яда проявляется тогда, когда минимальное число его молекул способно связывать и выводить из строя наиболее жизненно важные клетки – мишени.

    Классификация веществ по характеру воздействия на организм и общие требования безопасности регламентируются ГОСТ 12.0.003-74.

    Очень важно отметить комбинированное действие вредных веществ на здоровье человека. Комбинированное действие – это одновременное или последовательное действие на организм нескольких ядов при одном и том же пути поступления. Различают несколько типов комбинированного действия ядов в зависимости от эффектов токсичности:

    Аддитивное действие – это суммарных эффект смеси, равный сумме эффектов действующих компонентов.

    Потенцированное действие – компоненты смеси действуют так, что одно вещество усиливает действие другого.

    Антагонистическое действие – одно вещество ослабляет действие другого.

    Для ограничения неблагоприятного воздействия вредных веществ применяют гигиеническое нормирование их содержания в различных средах.

    Содержание вредных веществ в воздухе рабочей зоны не должно превышать установленных ГОСТ 12.1.005-88 и ГН 2.1.5.686-98 ПДК.

    Нормирование качества воды рек, озер и водохранилищ проводят в соответствии с «Санитарными правилами и нормами охраны поверхностных вод от загрязнения» №4630-88 МЗ СССР двух категорий: 1 – водоемы хозяйственно-питьевого и культурно-бытового назначения и 2 – рыбохозяйственного назначения.

    Нормирование химического загрязнения почв осуществляется по предельно допустимым концентрациям. Это концентрация химического вещества (мг) в пахотном слое почвы (кг), которая не должна вызывать прямого или косвенного отрицательного влияния на соприкасающиеся с почвой среды и здоровье человека, а также на самоочищающую способность почвы.

    Гигиеническая оценка качества почвы населенных мест проводится по методическим указаниям МУ 2.1.7.730-99.

    Вибрации. Малые механические колебания, возникающие в упругих телах или телах, находящихся под воздействием переменного физического поля, называют вибрацией. Воздействие вибрации на человека классифицируют: по способу передачи колебаний; по направлению действия вибрации; по временной характеристике вибрации. Вибрация относится к факторам, обладающим высокой биологической активностью. Выраженность ответных реакций обуславливается силой энергетического воздействия и биомеханическими свойствами человеческого тела как сложной колебательной системы. Мощность колебательного процесса в зоне контакта и время этого контакта являются главными параметрами, определяющими развитие вибрационных патологий, структура которых зависит от частоты и амплитуды колебаний, продолжительности воздействия, места приложения и направления оси вибрационного воздействия, явления резонанса и других условий.

    При повышении частот колебаний более 0,7 Гц возможны резонансные колебания в органах человека.

    Вибрационная патология стоит на втором месте (после пылевых) среди профессиональных заболеваний. При действии на организм общей вибрации страдает в первую очередь нервная система и анализаторы: вестибулярный, зрительный, тактильный. У рабочих вибрационных профессий отмечены головокружения, расстройства координации движения, симптомы укачивания, вестибуло-вегетативная неустойчивость, нарушение зрительной функции.

    Бич современного производства – локальная вибрация. Ей подвергаются работающие с ручным механизированным инструментом. Локальная вибрация вызывает спазмы сосудов кисти, предплечий, нарушая снабжение конечностей кровью. Одновременно колебания действуют на нервные окончания, мышечные и костные ткани, вызывают снижение кожной чувствительности, отложение солей в суставах пальцев, деформируя и уменьшая подвижность суставов.

    Гигиеническое нормирование вибраций регламентирует параметры производственной вибрации и правила работы с виброопасными механизмами и оборудованием, ГОСТ 12.1.012-90 «ССБТ. Вибрационная безопасность. Общие требования», Санитарные нормы СН 2.2.4/2.1.8.566-96 «Производственная вибрация, вибрация в помещениях жилых и общественных зданий». Документы устанавливают: классификацию вибраций, методы гигиенической оценки, нормируемые параметры и их допустимые значения, режим труда лиц виброопасных профессий, подвергающихся воздействию локальной вибрации, требования к обеспечению вибробезопасности и к вибрационным характеристикам машин.

    Акустическиеколебания. Физическое понятие об акустических колебаниях охватывает как слышимые, так и неслышимые колебания упругих сред. Акустические колебания в диапазоне 16 Гц…20кГц,воспринимаемые человеком с нормальным слухом, называют звуковыми, с частотой менее 16 Гц – инфразвуковыми, выше 20кГц – ультразвуковыми. Распространяясь в пространстве, звуковые колебания создают акустическое поле.

    Шум определяют как совокупность апериодических звуков различной интенсивности и частоты. Интенсивный шум на производстве способствует снижению внимания и увеличению числа ошибок при выполнении работы, быстроты реакции. Шум затрудняет своевременную реакцию работающих на предупредительные сигналы внутрицехового транспорта, что способствует возникновению несчастных случаев на производстве. Шум оказывает влияние на весь организм человека: угнетает ЦНС, вызывает изменение скорости дыхания и пульса, способствует нарушению обмена веществ, возникновению сердечно-сосудистых заболеваний, гипертонической болезни, может приводить к профессиональным заболеваниям.

    Нормируемые параметры шума на рабочих местах определены ГОСТ 12.1.003-83* и Санитарными номами СН 2.2.4/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки». Документы дают классификацию шумов по спектру на широкополосные и тональные, а по временным характеристикам - на постоянные и непостоянные.

    Ультразвук как упругие волны не отличается от слышимого звука, однако частота колебательного процесса способствует большему затуханию колебаний вследствие трансформации энергии в теплоту.

    Длительное систематическое влияние ультразвука вызывает функциональные нарушения нервной, сердечно-сосудистой и эндокринной систем, слухового и вестибулярного анализаторов. У работающих на ультразвуковых установках отмечают выраженную астению, сосудистую гипотонию, снижение электрической активности сердца и мозга. Контактное воздействие высокочастотного ультразвука на руки приводит к нарушению капиллярного кровообращения в кистях рук снижению болевой чувствительности, т.е. развиваются периферические неврологические нарушения.

    Гигиенические нормативы ультразвука определены ГОСТ 12.1.001-89 и СНиП 2.2.4/2.1.8.582-96. Гигиенической характеристикой воздушного ультразвука на рабочих местах являются уровни звукового давления (дБ) в третьоктавных полосах со среднегеометрическими частотами 12,5…100 кГц.

    Инфразвук – область акустических колебаний с частотой ниже 16 Гц. В условиях производства инфразвук сочетается с низкочастотным шумом, в ряде случаев – с низкочастотной вибрацией.

    При воздействии инфразвука на организм уровнем 110…150дБ могут возникать неприятные субъективные ощущения и многочисленные реактивные изменения: нарушения НЦС, сердечно-сосудистой и дыхательной системах, вестибулярном анализаторе. Отмечают жалобы на головные боли, головокружения, осязаемые движения барабанных перепонок, звон в ушах и голове, снижение внимания и работоспособности; может проявиться чувство страха, сонливость, затруднение речи, нарушение равновесия.

    Гигиеническая регламентация инфразвука производится по Санитарным нормам СН 2.2.4/2.1.8.583-96, которые задают для постоянного инфразвука предельно допустимые уровни звукового давления на рабочих местах для различных видов работ, а также в жилых и общественных помещениях и на территории жилой застройки.

    Электромагнитные поля и излучения. Спектр электромагнитных колебаний по частоте достигает 1021Гц. В зависимости от энергии фотонов его подразделяют на область неионизирующих и ионизирующих излучений. В гигиенической практике к неионизирующим излучениям относят электрические и магнитные поля. Действие электрических и магнитных полей приводят к расстройствам, которые субъективно выражаются жалобами на головную боль, вялость, расстройства сна,снижение памяти, повышенную раздражительность, апатию, боль в области сердца. Для хронического воздействия ЭМП промышленной частоты характерно нарушение ритма и замедление частоты сердечных сокращений, функциональные нарушения в НЦС и сердечно-сосудистой системе, в составе крови. Поэтому необходимо ограничивать время пребывания человека в зоне действия электрического поля, создаваемого токами промышленной частоты напряжением выше 400кВ.

    Нормирование ЭМП промышленной частоты осуществляют по предельно допустимым уровням напряженности электрического и магнитного полей частотой 50 Гц в зависимости от времени пребывания в нем и регламентируется «Санитарными нормами и правилами выполнения работ в условиях воздействия электрических полей промышленной частоты» №5802-91 и ГОСТ 12.1.002-84 по электрическому полю и СНиП 2.2.4.723-98 по переменному магнитному полю частоты (50Гц) в производственных условиях.

    Пребывание в ЭП напряженностью до 5кВ/м включительно допускается в течение всего рабочего дня.

    Воздействие электростатического поля (ЭСП) – статического электричества – на человека связано с протеканием через него слабого тока (несколько мкА). При этом электротравм никогда не наблюдается. Однако вследствие рефлекторной реакции на ток возможна механическая травма, падение с высоты и т.д. Наиболее чувствительны к электростатическому полю НЦС, сердечно-сосудистая система, анализаторы. Работающие в зоне ЭСП жалуются на головную боль, раздражительность, нарушение сна и др. Характерны своеобразные «фобии», обусловленные страхом ожидаемого разряда, склонность к психосоматическим расстройствам с повышенной эмоциональной возбудимостью и быстрой истощаемостью, неустойчивость показателей пульса и артериального давления.

    Нормирование уровня напряженности ЭСП осуществляют в соответствии с ГОСТ 12.1.042-84 в зависимости от времени пребывания персонала на рабочих местах. Предельно допустимый уровень напряженности ЭСП 60кВ/м в течение одного часа.

    При постоянной работе в условиях хронического воздействия МП, превышающих предельно допустимые уровни, развиваются нарушения функций нервной, сердечно-сосудистой и дыхательной систем, пищеварительного тракта, изменения в крови. Могут развиваться вегетативные и трофические нарушения в областях тела, находящегося под непосредственным воздействием МП. Они проявляются ощущением зуда, бледностью или синюшностью кожных покровов, отечностью, уплотнением кожи.

    В соответствии с СН 1742-77 напряженность МП на рабочем месте не должна превышать 8 кА/м.

    Большую часть спектра неионизирующих электромагнитных излучений (ЭМИ) составляют радиоволны (3Гц…3000ГГц), меньшую часть – колебания оптического диапазона (инфракрасное, видимое, ультрафиолетовое излучения).

    Биологические эффекты от воздействия ЭМИ могут проявляться в различной форме: от незначительных функциональных сдвигов до нарушений, свидетельствующих о развитии явной патологии. Следствием поглощения энергии ЭМИ является тепловой эффект. Избыточная теплота, выделяющаяся в организме человека, отводится путем увеличения нагрузки на механизм терморегуляции; начиная с определенного предела организм не справляется с отводом теплоты от отдельных органов и температура их может повышаться. Воздействие ЭМИ особенно вредно для тканей со слабо развитой сосудистой системой или недостаточным кровообращением (глаза, мозг, почки, желудок, желчный и мочевой пузырь).

    Для длительного действия ЭМИ характерным считают развитие функциональных расстройств ЦНС с не резко выраженными сдвигами эндокринно-обменных процессов и состава крови. В связи с этим могут появиться головные боли, повышение или понижение давления, урежение пульса, нервно-психические расстройства, утомление. Возможны трофические нарушения.

    Нормирование ЭМИ радиочастотного диапазона проводится по ГОСТ 12.1.006-84* и Санитарным правилам и нормам СНиП 2.2.4/2.1.8.055-96.

    Инфракрасное излучение (ИК) – часть электромагнитного спектра с длиной волны λ=780нм…1000мк, энергия которого при поглощении в веществе вызывает тепловой эффект. Интенсивное ИК-излучение воздействует на обменные процессы в миокарде, вводно-электролитный баланс в организме, на состояние верхних дыхательных путей, на органы зрения.

    Нормирование ИК – излучения осуществляется по интенсивности допустимых интегральных потоков излучения с учетом спектрального состава, размера облучаемой площади, защитных свойств спецодежды для продолжительности действия более 50% смены в соответствии ГОСТ 12.1.005-88 и СН 2.2.4.548-96 «Гигиенические требования к микроклимату производственных помещений.

    Видимое (световое) излучение – диапазон электромагнитных колебаний 780…400нм. Излучение видимого диапазона при достаточных уровнях энергии может представлять опасность для кожных покровов м органов зрения. Широкополосное световое излучение больших энергий характеризуется световым импульсом, действие которого на организм приводит к ожогам открытых участков тела, временному ослеплению и ожогу сетчатки глаз. Минимальная ожоговая доза светового излучения колеблется 2,93…8,37 Дж/см2∙с за время мигательного рефлекса (0,15 с).

    Ультрафиолетовое излучение (УФИ) – спектр электромагнитных колебаний с длиной волны 200…400нм. УФИ искуственных источников (электросварочных дуг, плазматронов) может стать причиной острых хронических профессиональных поражений. Наиболее уязвимы глаза, особенно страдают роговица и сетчатка. Кожные поражения.

    Гигиеническое нормирование УФИ осуществляется по СН 4557-88, которые устанавливают допустимые плотности потока излучения в зависимости от длины волн при условии защиты органов зрения и кожи.

    Лазерное излучение (ЛИ) – особый вид электромагнитного излучения, генерируемого в диапазоне длин волн 0,1…1000мкм. Отличие ЛИ от других видов излучений заключается в монохроматичности, когерентности и высокой степени направленности. ЛИ с длиной волны 380…1400нм представляет наибольшую опасность для сетчатки глаза, а 180…380 и выше – для передних сред глаза.

    Гигиеническая регламентация ЛИ проводится СНиП 5804-91 устройства и эксплуатации лазеров.

    Ионизирующее излучение вызывает в организме цепочку обратимых и необратимых изменений. Нарушаются обменные процессы, замедляется и прекращается рост тканей, возникают новые химические соединения не свойственные организму.

    Ионизирующая радиация при воздействии на организм человека может вызвать два вида эффектов: детерминированные пороговые эффекты (лучевая болезнь, лучевой ожог, лучевая катаракта и др.) и стохастические беспороговые эффекты (злокачественные опухоли, лейкозы, наследственные болезни).острые поражения развиваются при однократном равномерном гамма-облучении всего тела и поглощенной дозе выше 0,25 Гр. При дозах превышающих 6,0 Гр развивается крайне тяжелая форма лучевой болезни.

    Гигиеническая регламентация ионизирующего излучения осуществляется нормами радиационной безопасности НРБ–99 (СП 2.6.1.758-99).

    Электрический ток. Проходя через организм человека электроток производит термическое, электролитическое, механическое и биологическое действия.

    Термическое действие тока проявляется ожогами отдельных участков тела, нагревом до высокой температуры органов, расположенных на пути тока, вызывая в них значительные функциональные расстройства. Электролитическое действие тока выражается в разложении органической жидкости, в том числе крови, в нарушении ее физико-химического состава. Механическое действие тока приводит к расслоению, разрыву тканей организма в результате электродинамического эффекта. Биологическое действие тока проявляется раздражением и возбуждением живых тканей организма, а также нарушением внутренних биологических процессов.

    Электротравмы условно разделяют на общие и местные. К общим относят электрический удар, при котором процесс возбуждения различных групп мышц может привести к судорогам, остановке дыхания и сердечной деятельности. К местным травмам относят ожоги, металлизацию кожи, механические повреждения, электроофтальмию.

    Допустимым считается ток, при котором человек может самостоятельно освободиться от электрической цепи. При длительности действия более 10 с – 2мА, при 10с и менее – 6мА. Ток, при котором пострадавший не может самостоятельно оторваться от токоведущих частей, называется неотпускающим.

    При гигиеническом нормировании ГОСТ 12.1.038-82* устанавливает предельно допустимые напряжения прикосновения и токи, протекающие через тело человека при нормальном (неаварийном) режиме работы электроустановок производственного и бытового назначения постоянного и переменного тока частотой 50 и 400 Гц.

    Сочетанное действие вредных факторов.В условиях среды обитания, особенно в производственных условиях, человек подвергается, как правило, многофакторному воздействию, эффект которого может оказаться более значительным, чем при изолированном действии того или иного фактора.

    3.Защита от поражения электрическим током.

    Безопасность при работе с электроустановками обеспечивается применением различных технических и организационных мер. Они регламентированы действующими правилами устройства электроустановок (ПУЭ). Технические средства защиты от поражения электрическим током делятся на коллективные и индивидуальные, на средства, предупреждающие прикосновение людей к элементам сети, находящимся под напряжением, и средства, которые обеспечивают безопасность, если прикосновение все-таки произошло.

    Основные способы и средства электрозащиты:

    • изоляция токопроводящих частей и ее непрерывный контроль;

    • установка оградительных устройств;

    • предупредительная сигнализация и блокировки;

    • использование знаков безопасности и предупреждающих плакатов;

    • использование малых напряжений;

    • электрическое разделение сетей;

    • защитное заземление;

    • выравнивание потенциалов;

    • зануление;

    • защитное отключение;

    • средства индивидуальной электрозащиты.

    Изоляция токопроводящих частей — одна из основных мер электробезопасности. Согласно ПУЭ сопротивление изоляции токопроводящих частей электрических установок относительно земли должно быть не менее 0,5—10 МОм1. Различают рабочую, двойную и усиленную рабочую изоляцию.

    Рабочей называется изоляция, обеспечивающая нормальную работу электрической установки и защиту персонала от поражения электрическим током. Двойная изоляция, состоящая из рабочей и дополнительной, используется в тех случаях, когда требуется обеспечить повышенную электробезопасность оборудования (например, ручного электроинструмента бытовых электрических приборов и т.д.). Сопротивление двойной изоляции должно быть не менее 5 МОм, что в 10 раз пре вышает сопротивление обычной рабочей. В ряде случаев рабочую изоляцию выполняют настолько надежно, что ее электросопротивление составляет не менее 5 МОм и потому она обеспечивает такую же защиту от поражения током, как и двойная. Такую изоляцию называют усиленной рабочей изоляцией.

    Существуют основные и дополнительные изолирующие средства. Основными называют такие электрозащитные средства, изоляция которых надежно выдерживает рабочее напряжение. Дополнительные электрозащитные средства усиливают изоляцию человека от токопроводящих частей и земли. В табл. 20.2 приведены основные сведения об изолирующих электрозащитных средствах.

    Неизолированные токопроводящие части электроустановок, работающих под любым напряжением, должны быть надежно ограждены или расположены на недоступной высоте, чтобы исключить случайное прикосновение к ним человека. Конструктивно ограждения изготавливают из сплошных металлических листов или металлических сеток.

    Для предупреждения об опасности поражения электрическим током используют различные звуковые, световые и цветовые сигнализаторы, устанавливаемые в зонах видимости и слышимости персонала. Кроме того, в конструкциях электроустановок предусмотрены блокировки — автоматические устройства, с помощью которых преграждается путь в опасную зону или предотвращаются неправильные, опасные для человека действия. Блокировки могут быть механические (стопоры, защелки, фигурные вырезы), электрические или электромагнитные. Для информации персонала об опасности служат предупредительные плакаты, которые в соответствии с назначением делятся на предостерегающие, запрещающие, разрешающие и напоминающие. Части оборудования, представляющие опасность для людей, окрашивают в сигнальные цвета и на них наносят знак безопасности (в соответствии с ГОСТом 12.4.026-76 «Цвета сигнальные и знаки безопасности»). Красным цветом окрашивают кнопки и рычаги аварийного отключения электроустановок.

    Таблица 2. Классификация изолирующих электрозащитных средств

    https://studfiles.net/html/2706/899/html_tiucof4kth.vl2_/img-g9poit.png

    Для уменьшения опасности поражения током людей, работающих с переносным электроинструментом и осветительными лампами, используют малое напряжение, не превышающее 42 В. В ряде случаев, например, при работе в металлическом резервуаре, для питания ручных переносных ламп используют напряжение 12 В.

    Для повышения безопасности проводят электрическое разделение сетей на отдельные короткие электрически не связанные между собой участки с помощью разделяющих трансформаторов. Такие разделенные сети обладают малой емкостью и высоким сопротивлением изоляции. Раздельное питание используют при работе с переносными электрическими приборами, на строительных площадках, при ремонтах на электростанциях и др.

    При замыканиях тока на конструктивные части электрооборудования (замыкание на корпус) на них появляются напряжения, достаточные для поражения людей или возникновения пожара. Осуществить защиту от поражения электрическим током и возгорания в этом случае можно тремя путями: защитным заземлением, занулением и защитным отключением.

    Защитное заземление — это преднамеренное соединение с землей или ее эквивалентом металлических нетоковедущих частей электрооборудования, которые в обычном состоянии не находятся под напряжением, но могут оказаться под ним при случайном соединении их с токоведущими частями.

    Если произошло замыкание и корпус электроустановки оказался под напряжением, то прикоснувшийся к нему человек попадает под напряжение прикосновения пр), которое определяется выражением:

    https://studfiles.net/html/2706/899/html_tiucof4kth.vl2_/img-zmqzik.png (9)

    где V3 — полное напряжение на корпусе электроустановки, В;

     — потенциал поверхности земли или пола, В.

    Таким образом, напряжением прикосновения называется напряжение между двумя точками цепи тока, которых одновременно может коснуться человек.

    Рассмотрим схему действия защитного заземления на примере трехфазной сети с изолированной нейтралью (рис. 3).

    Если человек прикоснется к заземленной электроустановке, находящейся под напряжением, то он попадет под напряжение прикосновения, определяемое по Формуле:

    https://studfiles.net/html/2706/899/html_tiucof4kth.vl2_/img-rizyyr.png

    (10)

    где апр — коэффициент напряжения прикосновения или просто коэффициент прикосновения (апр < 1 и зависит от вида заземлителя);

    Iз — ток замыкания, А;

    Rз — сопротивление защитного заземления, Ом.

    Ток, проходящий через тело человека, попавшего под напряжение прикосновения (IА чел , А), составит:

    https://studfiles.net/html/2706/899/html_tiucof4kth.vl2_/img-cbalx9.png

    (11)

    где Rс — сопротивление растеканию тока в земле, зависящее от удельного сопротивления земли и сопротивления подошвы обуви человека, Ом.

    https://studfiles.net/html/2706/899/html_tiucof4kth.vl2_/img-f1jh5b.png

    Если человек находится в условиях высокой влажности (Rс -> 0), предыдущую формулу можно упростить:

    https://studfiles.net/html/2706/899/html_tiucof4kth.vl2_/img-gu5irq.png

    (12)

    Рассчитаем I Ачел для случая, если Iз= 4 А, Rз = 4 Ом и апр = 0,4 (контурный заземлитель):

    https://studfiles.net/html/2706/899/html_tiucof4kth.vl2_/img-ahv4e6.png

    (13)

    Этот ток безопасен для человека, так как не превышает значения неотпускающего тока (10 мА).

    Таким образом, принцип действия защитного заземления заключается в снижении до безопасных значений напряжений прикосновения (и напряжения шага), вызванных замыканием на корпус.

    Защитному заземлению (занулению) подвергают металлические части электроустановок и оборудования, доступные для прикосновения человека и не имеющие других видов защиты, например, корпуса электрических машин, трансформаторов, светильников, каркасы распределительных щитов, металлические трубы и оболочки электропроводок, а также металлические корпуса переносных электроприемников.

    Обязательно заземляют электроустановки, работающие под напряжением 380 В и выше переменного тока и питающиеся от источника постоянного тока с напряжением 440 В и выше. Кроме того, в помещениях повышенной и особой опасности заземляют установки с напряжением от 42 до 380 В переменного тока и от 110 до 440 В постоянного тока.

    Заземляющее устройство — это совокупность заземлителей - металлических проводников, соприкасающихся с землей, и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем. В зависимости от взаимного расположения заземлителей и заземляемого оборудования различают выносные и контурные заземляющие устройства. Первые из них характеризуются тем, что заземлители вынесены за пределы площадки, на которой размещено заземляемое оборудование, или сосредоточены на некоторой части этой площадки (рис. 4).

    https://studfiles.net/html/2706/899/html_tiucof4kth.vl2_/img-mgibet.png

    Контурное заземляющее устройство (рис. 5), заземлители которого располагаются по контуру (периметру) вокруг заземляемого оборудования на небольшом расстоянии друг от друга (несколько метров), обеспечивает лучшую степень защиты, чем предыдущее.

    https://studfiles.net/html/2706/899/html_tiucof4kth.vl2_/img-9bozn0.png

    Заземлители бывают искусственные, которые используются только для целей заземления, и естественные, в качестве которых используют находящиеся в земле трубопроводы (за исключением трубопроводов горючих жидкостей или газов), металлические конструкции, арматуру железобетонных конструкций, свинцовые оболочки кабелей и др. Искусственные заземлители изготавливают из стальных труб, уголков, прутков или полосовой ткани.

    Требования к сопротивлению защитного заземления регламентируются ПУЭ. В любое время года это сопротивление не должно превышать:

    • 4 Ом — в установках, работающих под напряжением до 1000 В; если мощность источника тока составляет 100 кВ*А и менее, то сопротивление заземляющего устройства может достигать 10 Ом;

    • 0,5 Ом — в установках, работающих под напряжением выше 1000 В с эффективно заземленной нейтралью. Наибольшее сопротивление заземляющего устройства (R, Ом) не должно быть более 250/ Iз (но не более 10 Ом) в установках напряжением выше 1000 В с изолированной нейтралью. При использовании заземляющего устройства одновременно для установок напряжением до 1000 В, не должно быть более 125/ Iз (но не более 4 или 10 Ом соответственно). В этих формулах Iз — ток замыкания на землю, А.

    Защитное зануление предназначено для защиты в трехфазных четырехпроводных сетях с глухозаземленной нейтралью, работающих под напряжением до 1000 В, так как в этих сетях использование защитного заземления неэффективно. Обычно это сети 220/127, 380/220 и 660/380 В.

    Рассмотрим действие защитного зануления подробнее. Пусть имеется трехфазная трехпроводная сеть, работающая под напряжением до 1000 В с заземленной нейтралью (рис. 6).

    https://studfiles.net/html/2706/899/html_tiucof4kth.vl2_/img-fi8l58.png

    Если в такой схеме одна из фаз будет замкнута на корпус электропроводки (показана на схеме молниеобразной стрелкой), то величина тока (Iз, А), протекающего в сети, определится из следующей зависимости:

    https://studfiles.net/html/2706/899/html_tiucof4kth.vl2_/img-a7aq2s.png (14)

    где Vф — фазное напряжение, В;

    Ro - сопротивление заземления нейтрали, Ом;

    Iз — сопротивление корпуса электроустановки, Ом.

    При этом на корпусе электроустановки возникает напряжение относительно земли (Vк), определяемое следующей формулой:

    https://studfiles.net/html/2706/899/html_tiucof4kth.vl2_/img-relxsl.png(15)

    Рассчитаем величину тока короткого замыкания (1к, А) для значений Vф = 220 В и R0 =  = 4 Ом:

    https://studfiles.net/html/2706/899/html_tiucof4kth.vl2_/img-tzc53k.png (16)

    Ток короткого замыкания /3 может оказаться недостаточным для срабатывания защиты, и электроустановка может не отключиться. Корпус электроустановки находится под опасным напряжением. Если человек случайно прикоснется к корпусу электроустановки, находящейся под этим напряжением, то ток, протекающий через тело человека, составит:

    https://studfiles.net/html/2706/899/html_tiucof4kth.vl2_/img-skytrz.png(17)

    где апр — коэффициент напряжения прикосновения.

    Если апр = 1 и VK = 110 В, то Iчел = 110/1000 = 0,11 А = 110 мА. Этот ток превышает значение фибрилляционного, поэтому является смертельно опасным. Таким образом, защитное заземление в этом случае не обеспечивает надежной защиты человека, поэтому используют не заземление, а зануление.

    Занулением называют способ защиты от поражения током автоматическим отключением поврежденного участка сети и одновременно снижением напряжения на корпусах оборудования на время, пока не сработает отключающий аппарат (плавкие предохранители, автоматы и др.). Зануление — это преднамеренное соединение с нулевым защитным проводником металлических нетокопроводяших частей, которые могут оказаться под напряжением (рис. 7).

    https://studfiles.net/html/2706/899/html_tiucof4kth.vl2_/img-uol_ws.png

    Проводник (1), который соединяет зануляемые части элекроустановки с глухозаземленной нейтральной точкой обмотки трансформатора, называют нулевым защитным. Назначение этого проводника заключается в создании для тока короткого замыкания электрической цепи с малым электросопротивлением (цепь обозначена на рисунке цифрами I — II — III — IV — V), чтобы данный ток был достаточен для быстрого отключения повреждения от сети. Это достигается срабатыванием элемента защиты сети от тока короткого замыкания (на рисунке этот элемент обозначен цифрой 2).

    Цепь зануления I — II — III — IV — V имеет очень малое электрическое сопротивление (доли Ом). Ток короткого замыкания, возникающий при замыкании на корпус и проходящий по цепи зануления, достигает большого значения (нескольких сотен ампер), что обеспечивает быстрое и надежное срабатывние элементов защиты.

    Для устранения опасности обрыва нулевого провода устраивают его повторное многократное рабочее заземление через каждые 250 м.

    Основное требование безопасности к занулению: оно должно обеспечивать надежное и быстрое срабатывание защиты. Для этого необходимо выполнение следующего условия:

    IKз >k IHOM(18)

    где Iном - номинальное значение тока, при котором происходит срабатывание элемента защиты;

    k — коэффициент, характеризующий кратность тока короткого замыкания относительно номинального значения тока, при котором срабатывает элемент защиты.

    Время срабатывания элементов защиты зависит от силы тока. Так, для плавких предохранителей и тепловых автоматов при = 10 время срабатывания предохранителя составляет 0,1 с, а при k = 3—0,2 с. Электромагнитный автоматический выключатель обесточивает сеть за 0,01 с. Согласно требованиям ПУЭ в помещениях с нормальными условиями должен находиться в пределах 1,2—3, а во взрывоопасных помещениях — k = 1,4—6.

    Еще одна система защиты — защитное отключение — это защита от поражения электрическим током в электроустановках, работающих под напряжением до 1000 В, автоматическим отключением всех фаз аварийного участка сети за время, допустимое по условиям безопасности для человека.

    Основная характеристика этой системы — быстродействие, оно не должно превышать 0,2 с. Принцип защиты основан на ограничении времени протекания опасного тока через тело человека. Существуют различные схемы защитного отключения, одна из них, основанная на использовании реле напряжения, представлена на рис. 20.8.

    При замыкании фазного провода на заземленный или зануленный корпус электроустановки на нем возникает напряжение корпуса VKЕсли оно превышает заранее установленное предельно допустимое напряжение VKдоп (т. е. если VK > Укдоп), срабатывает защитное отключающее устройство. Схема работает следующим образом.

    Вследствие разности потенциалов между корпусом электроустановки и землей возникает ток Iр , который, проходя через реле 5, замыкает его контакты, подавая питание на отключающую катушку 3. Под влиянием возникшего электромагнитного поля внутрь нее втягивается сердечник 4,вызывая отключение автоматического выключателя 2, и установка обесточивается.

    Защитное отключение рекомендуется применять:

    • в передвижных установках напряжением до 1000 В;

    • для отключения электрооборудования, удаленного от источника питания, как дополнение к занулению;

    • в электрифицированном инструменте как дополнение к| защитному заземлению или занулению;

    • в скальных и мерзлых грунтах при невозможности выполнить необходимое заземление.

    https://studfiles.net/html/2706/899/html_tiucof4kth.vl2_/img-ejwbsz.png

    1 — корпус электроустановки; 2 — автоматический выключатель; 3 — отключающая катушка; 4 — сердечник катушки; 5 — реле максимального

    напряжения; Rз — сопротивление защитного заземления; I3 — ток замыкания; Ip — ток, протекающий через реле; R1 — сопротивление вспомогательного заземления

    Рис. 8. Схема защитного отключения

    Рассмотрим кратко организационные мероприятия, обеспечивающие безопасную эксплуатацию электроустановок. К ним относятся оформление соответствующих работ нарядом или распоряжением, допуск к работе, надзор за проведением работ, строгое соблюдение режима труда и отдыха, переходов на другие работы и окончания работ.

    Нарядом для проведения работы в электроустановках называют составленное на специальном бланке задание на ее безопасное производство, определяющее содержание, место, время начала и окончания работы, необходимые меры безопасности, состав бригад и лиц, ответственных за безопасность выполнения работ. Распоряжением называют то же задание на безопасное производство работы, но с указанием содержания работы, места, времени и лиц, которым поручено ее выполнение.

    Все работы на токопроводящих частях электроустановок под напряжением и со снятием напряжения выполняют по наряду, кроме кратковременных работ (продолжительностью не более 1 ч), требующих участия не более трех человек. Эти работы выполняют по распоряжению.

    К организационным мероприятиям также относятся обучение персонала правильным приемам работы с присвоением работникам, обслуживающим электроустановки, соответствующих квалификационных групп. Сведения о квалификационных группах персонала представлены в табл. 3.

    В ряде случаев существенную опасность для человека представляет статическое электричество, под которым понимают совокупность явлений, связанных с возникновением, сохранением и релаксацией (ослаблением) свободного электрического заряда на поверхности и в объеме диэлектрических веществ, материалов, изделий или на изолированных проводниках. Протекание различных технологических процессов, таких, как измельчение, распыление, фильтрование и другие, сопровождается электризацией материалов и оборудования, причем возникающий на них электрический потенциал достигает значений тысяч и десятка тысяч вольт. Воздействие статического электричества на организм человека проявляется в виде слабого длительно протекающего тока либо в форме кратковременного разряда через тело человека, в результате чего может произойти несчастный случай.

    Вредное воздействие на организм человека оказывает и электрическое поле повышенной напряженности. Оно вызывает функциональные изменения центральной нервной, сердечнососудистой и некоторых других систем организма.

    Защиту от статического электричества осуществляют по двум основным направлениям: уменьшение генерации электрических зарядов и устранение зарядов статического электричества. Для реализации первого направления необходимо правильно подбирать конструкционные материалы, из которых изготавливаются машины, агрегаты и прочее технологическое оборудование. Эти материалы должны быть слабо электризующимися или неэлектризующимися. Например, синтетический материал, состоящий на 40% из нейлона и 60% дакрона, не электризуется при трении о хромированную поверхность.
      1   2   3   4   5   6


    написать администратору сайта