Главная страница

Биология экзамен. 1 Раздел I. Общая характеристика жизни


Скачать 0.75 Mb.
Название1 Раздел I. Общая характеристика жизни
АнкорБиология экзамен
Дата15.10.2020
Размер0.75 Mb.
Формат файлаdocx
Имя файлаmoi.docx
ТипДокументы
#143182
страница2 из 14
1   2   3   4   5   6   7   8   9   ...   14

Первичная структура – полинуклеотидная цепь, мономеры (нуклеотиды) соединяются фосфоди-эфирными связями (сборка цепи за счет фермента полимеразы).

Наращивание цепи идет в направлении 5/ --------3/ Вторичная структура ДНК – две полинуклеотидные цепи (антипараллельны), связанные водородными связями

Третьичная структура – трехмерная структура ДНП
Функции ДНК

Молекула ДНК человека — носитель генетической информации, которая записана в виде последовательности нуклеотидов с помощью генетического кода. В результате описанной выше репликации ДНК происходит передача генов ДНК от поколения к поколению.

Свойства ДНК:

Способность кодировать информацию (генетический код). Способность воспроизводить информацию (репликация). Способность реализовать информацию (трансляция). Способность правильно сохранять информацию (репарация). Способность передавать информацию (транскрипция). Способность изменять информацию (мутация и генетическая рекомбинация).

Самовоспроизведение — способность живого организма, его органа, ткани, клетки или клеточного органоида или включения к образованию себе подобного.Репликация (от лат. replicatio — возобновление) — процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской молекулы ДНК. В ходе последующего деления материнской клетки каждая дочерняя клетка получает по одной копии молекулы ДНК, которая является идентичной ДНК исходной материнской клетки. Этот процесс обеспечивает точную передачу генетической информации из поколения в поколение. Репликацию ДНК осуществляет сложный ферментный комплекс, состоящий из 15—20 различных белков, называемый реплисомой.

Репликация ДНК — ключевое событие в ходе деления клетки. Принципиально, чтобы к моменту деления ДНК была реплицирована полностью и при этом только один раз. Это обеспечивается определёнными механизмами регуляции репликации ДНК. Репликация проходит в три этапа:

1. инициация репликации

2. элонгация

3. терминация репликации.

Регуляция репликации осуществляется в основном на этапе инициации. Это достаточно легко осуществимо, потому что репликация может начинаться не с любого участка ДНК, а со строго определённого, называемого сайтом инициации репликации. Репликация начинается в сайте инициации репликации с расплетания двойной спирали ДНК, при этом формируется репликационная вилка — место непосредственной репликации ДНК. В репликационной вилке ДНК копирует крупный белковый комплекс (реплисома), ключевым ферментом которого является ДНК-полимераза. Репликационная вилка движется со скоростью порядка 100 000 пар нуклеотидов в минуту у прокариот и 500—5000 — у эукариот.

 матричный— последовательность синтезируемой цепи ДНК однозначно определяется последовательностью материнской цепи в соответствии с принципом комплементарности;

· полуконсервативный— одна цепь молекулы ДНК, образовавшейся в результате репликации, является вновь синтезированной, а вторая — материнской; идёт в направлении от 5’-конца новой молекулы к 3’-концу;

· полунепрерывный— одна из цепей ДНК синтезируется непрерывно, а вторая — в виде набора отдельных коротких фрагментов (фрагментов Оказаки); начинается с определённых участков ДНК, которые называются сайтами инициации репликации.

Этапы РЕПЛИКАЦИИ:

1 - Разделение материнской цепи на 2 матричные нити (работает фермент ГЕЛИКАЗА)

2 - Дестабилизирующие белки располагаются вдоль каждой полинуклеотидной цепи (роль: растяжение нити и доступность для + комплементарных нуклеотидов)

РЕПАРАЦИЯ – коррекция нарушений соединения под влиянием реакционно- способных веществ или УФ.

Разновидности:

- ЭКСЦИЗИОННАЯ или дорепликативная (с вырезками)

- ПОСТРЕПЛИКАТИВНАЯ (путем рекомбинации)

- СВЕТОВАЯ РЕПАРАЦИЯ (самопроизвольное устранение нарушений под действием видимого света).

РЕПАРАЦИЯ

- При наличии большого объема поражений включается система индуцируемых ферментов репарации (SOS система: восстановление может идти без соблюдения принципа комплементарности, что ведет к стойким изменениям – мутациям)

- При значительном повреждении – блокада репликации ДНК.

4. Ген, его свойства. Ген как функциональная единица наследственности. Классификация генов. Особенности организации генов у про- и эукариот. Генетический код как способ записи наследственной информации, его свойства. Цистрон, его структура.
Элементарной функциональной единицей наследственности является ГЕН

Первые представления о сложной структуре гена возникли в 20- х годах прошлого столетия.

Советские генетики А.С. Серебровский и Н.П.Дубинин выдвинули предположение о дискретной структуре гена

Американский ученый Бензер предложил назвать часть гена цистроном

Американский ученый Гильберт в 1978 г. Установил , что ген эукариот состоит

из информативных и неинформативных участков

Свойства гена:

  1. дискретность — несмешиваемость генов;

  2. стабильность — способность сохранять структуру;

  3. лабильность — способность многократно мутировать;

  4. множественный аллелизм — многие гены существуют в популяции во множестве молекулярных форм;

  5. аллельность — в генотипе диплоидных организмов только две формы гена;

  6. специфичность — каждый ген кодирует свой признак;

  7. плейотропия — множественный эффект гена;

  8. экспрессивность — степень выраженности гена в признаке;

  9. пенетрантность — частота проявления гена в фенотипе;

  10. амплификация — увеличение количества копий гена[

Классификация генов:

  1. Структурные гены :

  • Независимые гены – их транскрипция не связана с функциональными генами, а напрямую регулируется гормонами

  • Повторяющиеся гены (тандемные) – так устроены гены, несущие информацию о РНК

  • Кластерные гены – группы различных генов, объединенных одной функцией

  1. Функциональные гены:

  • Оператор – относится к группе акцепторов. Определяет время, с которого начинается транскрипция

  • Промотор –участок ДНК, включает 80-90 нп. Способен связываться с ДНК – зависимой РНК – полимеразой. Полимераза узнает участок ТАТААТ, который называется блок Прибнова. В этом месте ДНК плотно не упаковывается. Промотор определяет место, с которого начинается транскрипция

  • Энхансер – увеличивает скорость транскрипции

  • Сайленсер – снижает скорость транскрипции

  • Спейсер – неинформативный участок геном

  • Псевдогены – НП, в которых полимераза

  • не работает, в связи с мутацией

  • Терминатор - ген, на котором заканчивается транскрипция. Находится на 3’ конце. Включает палиндром

Признаки

Прокариоты

Эукариоты

Количество генов

4 тыс. (Е. coli)

Около 30 тыс. (человек)

Количество ДНК

4 млн пар нуклеотидов

3-7 млрд пар нуклеотидов

Кодирующие последовательности ДНК

Более 90%

Менее 10%

Связь ДНК с гистонами

Отсутствует

Формирует нуклеосомы

Укладка ДНК

Кольцевая, содержит 100 петель по 40 тыс. пар нуклеотидов

Линейная с замкнутыми в теломеры концами, имеет 4 уровня спирализации

Количество репликонов

Один

50 тыс.

Активно работающие участки

Более 90% генов

Менее 10% генов

Процессинг

Отсутствует

Осуществляется при переходе пре-мРНК из ядра в цитоплазму

Регуляция транскрипции

Оперонная

Сложная каскадная



Код наследственности – способ зашифровки в молекуле ДНК наследственной информации о структуре и функции белков

Свойства кода (М.Ниренберг, 1963 г.):

  • Колинеарность - параллелизм. Нуклеотидная последовательность ДНК соответствует аминокислотной последовательности белка

  • Триплетность –каждая аминокислота кодируется тройкой нуклеотидов – триплетом. Из четырех нуклеотидов путем различных сочетаний можно получить 64 триплета - кодона.

  • Неперекрываемость – перекрываемость –

  • при неперекрываемости один и тот же нуклеотид не может одновременно принадлежать двум кодонам:

  • Перекрываемость – заключается в том, что

  • с одного и того же участка ДНК может считываться информация для образования двух и более белков

  • в зависимости от начальной точки считывания

  • Вырожденность – экспериментально установлено, что при триплетности все 64 кодона имеют значение в экспрессии генов. Из них 61 кодон кодирует аминокислоты, а 3 кодона являются стоп – кодонами: УГА,УАГ,УАА.

  • Универсальность – кодирование аминокислот происходит одинаково на всех уровнях организации живой системы

  • Квазиуниверсальность – некоторые кодоны в разных генетических системах кодируют различные аминокислоты

Цистрон:
Ген как функциональную единицу предложено называть цистроном. Именно цистрон определяет последовательность аминокислот в каждом специфическом белке. Цистрон, в свою очередь, подразделяется на предельно малые в линейном измерении единицы - реконы, способные к рекомбинации при кроссинговере. Выделяют, кроме того, мутоны - наименьшие части гена, способные к изменению (мутированию). Размеры рекона и мутона могут равняться одной или нескольким парам нуклеотидов, цистрона - сотням и тысячам нуклеотидов.


5. Этапы реализации генетической информации. Транскрипция и посттранскрипционные процессы. Регуляция

6. Трансляция и посттрансляционные процессы. Структура и виды РНК, роль РНК в процессе реализации наследственной информации. Регуляция


РНК — полимер, мономерами которой являются рибонуклеотиды. В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение — некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК — нуклеотид (рибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК — урацил, цитозин, пуриновые основания — аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК: 1) информационная (матричная) РНК — иРНК (мРНК), 2) транспортная РНК — тРНК, 3) рибосомная РНК — рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса — 25 000–30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке.Функции тРНК: 1) транспорт аминокислот к месту синтеза белка, к рибосомам, 2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3'-концу акцепторного стебля.Антикодон — три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000–5000 нуклеотидов; молекулярная масса — 1 000 000–1 500 000. На долю рРНК приходится 80–85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы — органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках. Функции рРНК: 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке. Функции иРНК: 1) перенос генетической информации от ДНК к рибосомам, 2) матрица для синтеза молекулы белка, 3) определение аминокислотной последовательности первичной структуры белковой молекулы.

Фаза инициации, или начало синтеза пептида, заключается в объединении двух находящихся до этого порознь в цитоплазме субчастиц рибосомы на определенном участке мРНК и присоединении к ней первой аминоацил-тРНК. Этим задается также рамка считывания информации, заключенной в мРНК (рис. 3.32).

В молекуле любой мРНК вблизи ее 5'-конца имеется участок, комплементарный рРНК малой субчастицы рибосомы и специфически узнаваемый ею. Рядом с ним располагается инициирующий стартовый кодон АУТ, шифрующий аминокислоту метионин. Малая субчастица рибосомы соединяется с мРНК таким образом, что стартовый кодон АУТ располагается в области, соответствующей П-участку. При этом только инициирующая тРНК, несущая метионин, способна занять место в недостроенном П-участке малой субчастицы и комплементарно соединиться со стартовым кодоном. После описанного события происходит объединение большой и малой субчастиц рибосомы с образованием ее пептидильного и аминоацильного участков (рис. 3.32).



 

Рис. 3.32. Инициация белкового синтеза:

 

I — соединение малой субчаспщы рибосомы с мРНК, присоединение к стартовому кодону несущей метионин тРНК, которая располагается в недостроенном П-участке; II — соединение большой и малой субчастиц рибосомы с образованием П- и А-участков; следующий этап связан с размещением в А-участке аминоацил-тРНК, соответствующей расположенномув нем кодону мРНК,—начало элонгации; ак — аминокислота

 

К концу фазы инициации П-участок занят аминоацил-тРНК, связанной с метионином, тогда как в А-участке рибосомы располагается следующий за стартовым кодон.

Описанные процессы инициации трансляции катализируются особыми белками — факторами инициации, которые подвижно связаны с малой субчастицей рибосомы. По завершении фазы инициации и образования комплекса рибосома — мРНК — инициирующая аминоацил-тРНК эти факторы отделяются от рибосомы.

Фаза элонгации, или удлинения пептида, включает в себя все реакции от момента образования первой пептидной связи до присоединения последней аминокислоты. Она представляет собой циклически повторяющиеся события, при которых происходит специфическое узнавание аминоацил-тРНК очередного кодона, находящегося в А-участке, комплементарное взаимодействие между антикодоном и кодоном.

Благодаря особенностям трехмерной организации тРНК. (см. разд. 3.4.3.1) при соединении ее антикодона с кодоном мРНК. транспортируемая ею аминокислота располагается в А-участке, поблизости от ранее включенной аминокислоты, находящейся в П-участке. Между двумя аминокислотами образуется пептидная связь, катализуемая особыми белками, входящими в состав рибосомы. В результате предыдущая аминокислота теряет связь со своей тРНК и присоединяется к аминоацил-тРНК, расположенной в А-участке. Находящаяся в этот момент в П-участке тРНК высвобождается и уходит в цитоплазму (рис. 3.33).

Перемещение тРНК, нагруженной пептидной цепочкой, из А-участка в П-участок сопровождается продвижением рибосомы по мРНК на шаг, соответствующий одному кодону. Теперь следующий кодон приходит в контакт с А-участком, где он будет специфически «опознан» соответствующей аминоацил-тРНК, которая разместит здесь свою аминокислоту. Такая последовательность событий повторяется до тех пор, пока в А-участок рибосомы не поступит кодон-терминатор, для которого не существует соответствующей тРНК.

 



 

Рис. 3.33. Фаза элонгации в синтезе белка: 1-й этап—аминоацил-тРНК присоединяется к кодону, расположенному в А-участке; 2-й этап — между аминокислотами, расположенными в А- и П-участках, образуется пептидиая связь: тРНК, расположенная в П-участке, освобождается от своей аминокислоты и покидает рибосому; 3-й этап —рибосома перемещается по мРНК на один кодон так, что тРНК, нагруженная пептидной цепочкой, переходит из А-участка в П-участок; свободный А-участок может быть занят соответствующей аминоацил-тРНК

Рис. 3.34. Терминация синтеза пептидной цепи: 1-й этап — присоединение фактора освобождения к стоп-кодону; 2-й этап — терминация, высвобождение завершенного пептида; 3-й этап —диссоциация рибосомы на две субчастицы

Сборка пептидной цепи осуществляется с достаточно большой скоростью, зависящей от температуры. У бактерий при 37 °С она выражается в добавлении к подипептиду от 12 до 17 аминокислот в 1 с. В эукариотических клетках эта скорость ниже и выражается в добавлении двух аминокислот в 1 с.

Фаза терминации, или завершения синтеза полипептида, связана с узнаванием специфическим рибосомным белком одного из терминирующих кодонов (УАА, УАГ или У ГА), когда тот входит в зону А-участка рибосомы. При этом к последней аминокислоте в пептидной цепи присоединяется вода, и ее карбоксильный конец отделяется от тРНК. В результате завершенная пептидная цепь теряет связь с рибосомой, которая распадается на две субчастицы (рис. 3.34).

7. Тонкая структура генов у про- и эукариот. Особенности экспрессии генетической информации у про- и эукариот. Взаимосвязь между геном и признаком.

05

8. Мутации, их классификация, механизмы возникновения. Ген как единица изменчивости. Генные мутации и их классификация. Причины и механизмы возникновения генных мутаций.
1   2   3   4   5   6   7   8   9   ...   14


написать администратору сайта