Главная страница
Навигация по странице:

  • Биологический смысл полового размножения

  • Моногибридное скрещивание

  • Множественные аллели. Наследование групп крови

  • Межаллельная комплементация.

  • Биология экзамен. 1 Раздел I. Общая характеристика жизни


    Скачать 0.75 Mb.
    Название1 Раздел I. Общая характеристика жизни
    АнкорБиология экзамен
    Дата15.10.2020
    Размер0.75 Mb.
    Формат файлаdocx
    Имя файлаmoi.docx
    ТипДокументы
    #143182
    страница5 из 14
    1   2   3   4   5   6   7   8   9   ...   14

    Половое размножение и его биологический смысл.


    Размножение – важнейшее свойство всего живого. Вид, размножающийся только бесполым путем, может процветать достаточно длительное время, если он обитает в относительно постоянных условиях. При возникновении в среде его обитания изменений, которые вызывают гибель отдельных особей, весьма вероятно, что погибнут все особи, потому что они очень сходны генетически.

    Половое размножение – более прогрессивная форма размножения, очень широко распространено в природе, как среди растений, так и среди животных. Образующиеся в процессе полового размножения организмы отличаются друг от друга генетически, а также по характеру приспособленности к условиям обитания.

    При половомразмножении материнским и отцовским организмами вырабатываются специализированные половые клетки –гаметы. Женские неподвижные гаметы называются яйцеклетками, мужские неподвижные – спермиями, а подвижные – сперматозоидами. Эти половые клетки сливаются с образованием зиготы, т.е. происходит оплодотворение. Половые клетки, как правило, имеют половинный набор хромосом (гаплоидный), так что при их слиянии восстанавливается двойной (диплоидный) набор, из зиготы развивается новая особь. При половом размножении потомство образуется при слиянии гаплоидных ядер. Гаплоидные ядра образуются в результате мейотического деления.

    Мейоз ведет к уменьшению генетического материала вдвое, благодаря чему количество генетического материала у особей данного вида в ряду поколений остается постоянным. Во время мейоза происходит несколько важных процессов: случайное расхождение хромосом (независимое расчленение), обмен генетическим материалом между гомологичными хромосомами (кроссинговер). В результате этих процессов возникают новые комбинации генов. Поскольку ядро зиготы после оплодотворения содержит генетический материал двух родительских особей, это повышает генетическое разнообразие внутри вида. Если суть и биологическое значение полового процесса едины для всех организмов, то его формы очень разнообразны и зависят от уровня эволюционного развития, среды обитания, образа жизни и некоторых других особенностей.

    Половое размножение есть у всех групп растений. Мхи растут дернинами. Мужские и женские растения оказываются рядом. Дождевая вода помогает сперматозоидам попасть на верхушки женских растений, где они сливаются с яйцеклетками, образуется зигота, из которой развивается сидящая на длинной ножке коробочка со спорами. Упапоротников половые клетки развиваются на заростке, образовавшемся в результате прорастания споры. На нижней стороне заростка женские органы – архегонии, мужские – антеридии. Во влажной среде половые клетки сливаются, зигота дает начало зародышу, из которого вырастает молодой папоротник. У цветковых растений самое сложное половое размножение – двойное оплодотворение. Пыльца (мужские половые клетки) попадает на рыльце пестика (женский половой орган) и прорастает. По пыльцевой трубке спермии движутся к семязачатку. Спермии проникают в зародышевый мешок. Один сливается с яйцеклеткой и дает начало зародышу, второй спермий сливается с центральной клеткой и дает начало эндосперму – запасу питательных веществ.

    У животных половое размножение связано с образованием половых клеток, которое происходит в специализированных органах – половых железах, в результате особого процесса. Половые клетки отличаются от всех остальных клеток тела уменьшенным вдвое набором хромосом. Яйцеклетка неподвижна, содержит набор питательных веществ, сперматозоиды мелкие, подвижные. Половые клетки могут образоваться в разных организмах, а могут в одном. Такие организмы называют гермафродитами (плоские черви). В природе явление гермафродитизма распространено чрезвычайно широко. Он считается самой примитивной формой полового размножения и распространен преимущественно у примитивных организмов. Одним из основных преимуществ гермафродитизма заключается в возможности самооплодотворения, что очень важно для некоторых крупных внутренних паразитов, ведущих одиночный образ жизни. Еще одной модификацией полового размножения является партеногенез. При таком способе размножения женская гамета развивается в дочернюю особь без оплодотворения мужской гаметой. Ярким примером партеногенеза является размножение общественных насекомых, пчел, муравьев, термитов.

    Половое размножение имеет очень большие эволюционные преимущества по сравнению с бесполым. Сущность полового размножения заключается в объединении в наследственном материале потомка генетической информации из двух разных источников – родителей. Оплодотворение у животных может быть наружным или внутренним. При слиянии образуется зигота с двойным набором хромосом.

    В ядре зиготы все хромосомы становятся парными: в каждой паре одна из хромосом отцовская, другая – материнская. Дочерний организм, который разовьется из такой зиготы, в одинаковой мере снабжен наследственной информацией обоих родителей.

    Биологический смысл полового размножения состоит в том, что возникающие организмы могут сочетать полезные признаки отца и матери. Такие организмы более жизнеспособны. Половое размножение играет важную роль в эволюции организмов.

    3. Моно-, ди- и полигибридное скрещивание. Их цитологические и статистические основы. Условия менделирования признаков. Менделирующие признаки у человека.
    Моногибридное скрещивание-скрещивание особей с различными генотипами, при котором у родительских у родительских особей учитывается одна пара альтернативных признаков.

    Первый закон Менделя

    При скрещивании гомозиготных особей,анализируемых по одной паре альтернативных признаков,наблюдается единообразие гибридов первого поколения,как по фенотипу,так и по генетипу.

    Второй закон Менделя

    При скрещивании гибридов первого поколения (гетерозиготных организмов),аналихируемых по одной паре альтернативных признаков,наблюдается расщепление в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.

    (вдруг дополнительно спросят, то): Для теоретического обоснования практических результатов Г.Мендель предложил, а Бэтсон в 1902 году обосновал гипотезу «чистоты гамет»,включающая следующие положения:

    ·Наследуются не сами признаки,а наследственные факторы их определяющие.

    ·Наследственные факторы постоянны и передаются из поколения в поколение в неизменном виде

    ·Любой признак у каждого организма определяется двумя наследственными факторами,причем один приходит от матери, а другой от отца.

    ·При образовании половых клеток(гамет) наследственные факторы расходятся в разные гаметы и оказываются независимыми друг от друга,т.е. «чистыми»

    ·При оплодотворении встреча разнополых гамет,несущих разные наследственные факторы,равновероятна.

    Цитологические основы:

    ·Наследственные факторы-гены

    ·Парность наследственных факторов- парность хромосом

    ·Чистота гамет – результат расхождения гомологичных хромосом при мейозе

    ·Равновероятность-восстановление диплоидного набора хромосом при оплодотворении

     
    При полигибридном скрещивании родительский организм анализируется по нескольким признакам. Примером полигибридного скрещивания может служить дигибридное, при котором у родительских организмов принимаются во внимания отличия по двум парам признаков. Первое поколение гибридов в этом случае оказывается однородным, проявляются только доминантные признаки, причем доминирование не зависит от того, как признаки были распределены между родителями.

    Изучая расщепление при дигибридном скрещивании, Мендель обнаружил, что признаки наследуются независимо друг от друга. Эта закономерность, известная как правило независимого комбинирования признаков: при скрещивании гомозиготных особей, отличающихся двумя (или более) парами альтернативных признаков, во втором поколении (F2) наблюдается независимое наследование и комбинирование признаков, если гены, определяющие их расположены в различных гомологичных хромосомах.

    Цитологические основы дигибридного скрещивания. Как известно, в профазе 1 мейоза гомологичные хромосомы конъюгируют, а в анафазе одна из гомологичных хромосом отходит к одному полюсу клетки, а другая — к другому. При расхождении к разным полюсам негомологичные хромосомы комбинируются свободно и независимо друг от друга. При оплодотворении в зиготе восстанавливается диплоидный набор хромосом и гомологичные хромосомы, оказавшиеся в процессе мейоза в разных половых клетках родителей, соединяются вновь.
    Для выполнения законов Менделя необходимо соблюдение ряда условий:

    ·Гены, отвечающие за разные признаки, должны располагаться в негомологичных хромосомах

    ·Между генами не должно быть взаимодействия, кроме полного доминирования

    ·Отсутствие летальных генов и др.

    Отклонение от ожидаемого расщепления по законам Менделя вызывают летальные гены. Пример-наследование окраски у диких мышей, наследование брахидактилии у человека.

    Менделирующие признаки человека.

    Менделирующими называются признаки, которые наследуются по законам Менделя. В отличие от признаков, наследование которых имеет более сложный характер по отношению к менделирующим признакам, возможно четкое прогнозирование их проявлений в потомстве.

     

    Признак

    Доминантный

    Рецессивный

    Цвет глаз

    карие

    голубые

    Цвет волос

    темные

    светлые

    Разрез глаз

    монголоидный

    европеоидный

    Мочка уха

    свободная

    приросшая

    Владение рукой

    праворукость

    леворукость

    Развитие кисти

    Полидактилия

    Нормальное строение кисти

    Брахидактилия

    Нормальное строение кисти




    Общая пигментация

    Наличие пигмента

    альбинизм

    Метаболизм фенилаланина

    нормальный

    фенилкетонурия

    Строение молекулы гемоглобина

    Нормальное

    Серповидноклеточная анемия

    талассемия

    Нормальное





    4. Взаимодействие неаллельных генов в детерминации признаков: полное и неполное доминирование, кодоминирование, межаллельная комплементация, сверхдоминирование. Множественные аллели. Наследование групп крови у человека.

    Полное доминирование — это вид взаимодействия аллельных генов, при котором фенотип гетерозигот не отличается от фенотипа гомозигот по доминанте, то есть в фенотипе гетерозигот присутствует продукт доминантного гена. Полное доминирование широко распространено в природе, имеет место при наследовании, например, окраски и формы семян гороха, цвета глаз и цвета волос у человека, резус-антигена и мн. др.

    Неполное доминирование - так называется вид взаимодействия аллельных генов, при котором фенотип гетерозигот отличается как от фенотипа гомозигот по доминанте, так и от фенотипа гомозигот по рецессиву и имеет среднее (промежуточное) значение между ними. Имеет место при наследовании окраски околоцветника ночной красавицы, львиного зева, окраски шерсти морских свинок и пр.

    Множественный алелизм - у каждого организма есть только по два аллельных гена. Вместе с тем нередко в природе количество аллелей может быть более двух, если какой то локус может находится в разных состояниях. В таких случаях говорят о множественные аллели или множественный аллеломорфизм. Множественные аллели обозначаются одной буквой с разными индексами, например: А, А1, А3 ... Аллельные гена локализуются в одинаковых участках гомологичных хромосом. Поскольку в кариотипе всегда присутствуют по две гомологичных хромосомы, то и при множественных аллелях каждый организм может иметь одновременно лишь по два одинаковых или различных аллели. В половую клетку (вместе с различием гомологичних хромосом) попадает только по одному из них. Для множественных аллелей характерное влияние всех аллелей на один и тот же признак. Отличие между ними заключается лишь в степени развития признака. Второй особенностью является то, что в соматических клетках или в клетках диплоидных организмов содержится максимум по две аллели из нескольких, поскольку они расположены в одном и том же локусе хромосомы. Еще одна особенность присуща множественным аллелям. По характеру доминирования аллеломорфные признаки размещаются в последовательном ряду: чаще нормальный, неизмененный признак доминирует над другими, второй ген ряда рецессивный относительно первого, однако доминирует над следующими и т.д. Одним из примеров проявления множественных аллелей у человека есть группы крови системы АВО. Множественный алелизм имеет важное биологическое и практическое значение, поскольку усиливает комбинативну изменчивость, особенно генотипического.

    Множественные аллели. Наследование групп крови. - Множественный аллелизм – это явление, когда один признак (проявляющийся в нескольких формах) контролируется не одной парой аллельных генов, а несколькими аллелями генов, т. е. существует несколько аллеломорфных состояний одного гена, среди которых могут быть несколько доминантных или рецессивных аллелей.

    Пример: наследование групп крови у человека контролируется геном Ii (изогемагглютиноген), представленным тремя аллелями – А, В, О. Аллели А и В – доминантные, О – рецессивный.

    Группы крови системы АВО открыты в начале ХХ века австрийским учёным К. Ландштейнером при изучении поведения эритроцитов в сыворотке крови разных людей. Он обратил внимание, что при переливании крови эритроциты у одних людей распределяются равномерно, а у других склеиваются. Используя разные комбинации, он обнаружил три группы крови, I, II, III, а IV была установлена позже.

    Кодоминирование — вид взаимодействия аллельных генов, при котором фенотип гетерозигот отличается как от фенотипа гомозигот по доминанте, так и от фенотипа гомозигот по рецессиву, и в фенотипе гетерозигот присутствуют продукты обоих генов. Имеет место при формировании, например, IV группы крови системы (АВ0) у человека.

    Группа крови

    Генотип

    Фенотип

    Вид взаимодействия генов у гетерозигот

    I

    i0i0

    Отсутствие эритроцитарных антигенов А и В (0)




    II

    IAIA, IAi0

    Наличие эритроцитарных антигенов А (А)

    Полное доминирование

    III

    IBIB, IBi0

    Наличие эритроцитарных антигенов В (В)

    Полное доминирование

    IV

    IAIB

    Наличие эритроцитарных антигенов А и В (АВ)

    Кодоминирование

    Сверхдоминирование, сверхдоминантность (генетическая), лучшая приспособленность и более высокая селективная ценность (отборное преимущество) гетерозигот от моногибридного скрещивания (например, Аа) по сравнению с обоими типами гомозигот (АА и аа). Один из характерных примеров сверхдоминирвания является повышенная частота аллеля гена серповидноклеточной анемии в популяциях человека, живущих в условиях высокой вероятности заражения малярией. Мутантный аллель защищает организм от заболевания малярией. Гомозиготы по нормальному аллелю могут заболеть малярией и погибнуть, гомозиготы по мутантному аллелю - с высокой вероятностью гибнут от анемии. Гетрозиготы по этому гену не болеют серповидновлеточной анемией и устойчивы к малярии. В ряде случаев аллель гена, с которым связано сверхдоминирование является рецессивно летальным, и поддерживается в популяции за счёт преимущества гетерозигот. Гетерозиготы, имеющие нормальный и мутантный вариант этого гена, в ряде случаев, характеризуются повышенной жизнеспособностью.

    Межаллельная комплементация. Это редкий вид взаимодействия аллельных генов, при котором у организма, гетерозиготного по двум мутантным аллелям гена М(МIМII), возможно формирование нормального признака М. Например, ген М отвечает за синтез белка, имеющего четвертичную структуру и состоящего из нескольких одинаковых полипептидных цепей. Мутантный аллель Ml вызывает синтез измененного пептида Ml, а мутантный аллель МII определяет синтез другой, но тоже ненормальной полипептидной цепи. Взаимодействие таких измененных пептидов и компенсация измененные участков при формировании четвертичной структуры в редки: случаях может привести к появлению белка с нормальными свойствами.

    5. Взаимодействие неаллельных генов: эпистаз, комплементарность, полимерия.

    Неаллельные гены — это гены, расположенные в различных участках хромосом и кодирующие неодинаковые белки. Неаллельные гены также могут взаимодействовать между со­бой.

    При этом либо один ген обусловливает развитие нескольких признаков, либо, наоборот, один признак проявляется под действием совокупности нескольких генов.

    Выделяют три формы и взаимодействия неаллельных генов:

    • комплементарность;

    • эпистаз;

    • полимерия.
    1   2   3   4   5   6   7   8   9   ...   14


    написать администратору сайта