Главная страница
Навигация по странице:

  • 6. Технологический процесс

  • Тема 5. Слесарное дело. 1. Слесарное дело


    Скачать 216 Kb.
    Название1. Слесарное дело
    Дата17.09.2020
    Размер216 Kb.
    Формат файлаdoc
    Имя файлаТема 5. Слесарное дело.doc
    ТипДокументы
    #138336
    страница2 из 2
    1   2
    5. Контроль качества выполнения слесарных работ

    Основным критерием оценки качества производимых слесарных работ является точность изготовляемых деталей.

    Точностью называется степень соответствия геометрической формы и размеров готовой детали геометрической форме и размерам, заданным по чертежу. Невозможно получить совершенно точные и одинаковые размеры деталей при изготовлении их вручную слесарным методом, хотя зачастую при доводке различного рода инструментов слесари-инструментальщики добиваются высокой степени точности обработки деталей. При обычной слесарной работе точность изготовления деталей значительно ниже точности, достигаемой механической обработкой на станках. Неизбежны при обработке деталей некоторые отклонения и от заданной геометрической формы. Правильное техническое измерение и проверка размеров, геометрической формы и состояния поверхности — важные условия качественного изготовления деталей. Точность обработки и чистота поверхности зависят от точности измерения. Измерение заключается в сравнении измеряемой величины с другой однородной величиной, называемой единицей измерения. Предметами измерения при обработке металла слесарем являются изготовляемые им детали машин, станков, приборов, рабочие и контрольно-измерительные инструменты и другие металлические изделия. При измерении пользуются мерами, равными единице измерения (металлический метр, гиря весом 1 кг, мерная плитка). Такие меры, выполненные с наивысшей точностью, называются эталонами. Вместе с мерами широко применяются различные приспособления в виде измерительных инструментов. Все это называется измерительными средствами. В зависимости от применяемых измерительных средств различают два метода измерения:

    1) абсолютный метод измерения, который заключается в определении значения всей измеряемой величины. Нулевая точка шкалы измерительного прибора устанавливается в нулевой точке измеряемого изделия, от которой идет отсчет;

    2) относительный метод измерения, при котором определяется значение не всей измеряемой величины, а ее отклонения от установленной меры или образца. Нулевая точка прибора настраивается не на нулевую точку измеряемого изделия, а на какой-либо определенный заданный размер.

    Методы измерения подразделяют на:

    1) контактный — производится путем непосредственного соприкосновения измерительной части прибора с поверхностью измеряемого изделия. По этому методу производится наибольшее число измерений;

    2) неконтактный — при измерении прибор не соприкасается измерительной частью с изделием. По этому методу производится измерение с помощью проекционных, пневматических и емкостных приборов.

    Все средства измерения и контроля, применяемые в слесарном деле, можно разделить на контрольно-измерительные инструменты и измерительные приборы. К контрольно-измерительным инструментам относятся: инструменты для контроля плоскостности и прямолинейности, плоскопараллельные концевые меры длины (плитки), штриховые инструменты, воспроизводящие любое кратное или дробное значение единицы измерения в пределах шкалы (штангенинструменты), микрометрические инструменты, основанные на действии винтовой пары (микрометры). К измерительным инструментам относятся: рычажно-механические (индикаторы), оптико-механические (оптиметры), электрические (профилометры). Далее приведем описание наиболее часто применяемых при слесарных работах контрольно- измерительных инструментов.

    Масштабная линейка применяется для измерения наружных и внутренних линейных размеров и расстояний. На нее нанесены деления, штрихи обычно через каждый миллиметр, а иногда через полмиллиметра. Иногда наносится дюймовая шкала. Точность измерения миллиметровой масштабной линейкой 0,5 мм. Ходовые размеры масштабных линеек: длина 150, 300, 500 и 1000 мм, ширина от 15 до 35 мм, толщина от 0,3 до 1,5 мм. Масштабные линейки изготовляют из углеродистой инструментальной стали У7 или У8.

    Рулетка применяется для измерения больших линейных размеров, а также длины окружностей. Рулетка представляет собой стальную ленту в 1000, 2000, 5000, 10000, 15000, 20000, 25000 мм длиной с миллиметровыми делениями при размере до 5000 мм и сантиметровыми — при 5000–25000 мм. Лента помещается в круглом футляре с укрепленной в центре осью. При пользовании ленту вытягивают за свободный конец. Обратное наматывание производится при помощи ручки.

    Кронциркуль и нутрометр служат для измерения линейных размеров с последующим их отсчетом по масштабной линейке. Наружные размеры измеряются кронциркулем, внутренние — нутрометром. Различие между кронциркулем и нутрометром состоит только в форме ножек. Кронциркуль имеет кривые ножки, а нутрометр — прямые с изогнутыми наружу концами. Ножки кронциркуля и нутрометра закреплены на одной оси так, чтобы они могли вращаться обязательно с некоторым, не очень большим трением, чтобы не терялся контакт с поверхностью после замера. Кронциркуль и нутрометр изготовляют из стали У7-У8. Их измерительные концы на длине около 20 мм закаливают. При измерении детали кронциркулем или нутрометром берут инструмент правой рукой за шарнирную часть и раздвигают ножки приблизительно на проверяемый размер.

    Затем легкими ударами сближают ножки так, чтобы они прикасались губками к поверхности измеряемой детали без качки и просвета. При этом инструмент надо держать строго перпендикулярно к оси измеряемой детали. После снятия размера с детали кронциркуль или нутрометр осторожно прикладывают к масштабной линейке так, чтобы одна ножка упиралась в торец линейки. Слегка поддерживая эту ножку мизинцем левой руки, накладывают вторую ножку на линейку и отсчитывают полученный размер. Преимущество пружинных кронциркуля и нутрометра заключается в том, что их ножки разводят не рукой, а с помощью установочного винта и гайки. При этом раствор ножек не сбивается в случае неосторожного удара. С помощью кронциркуля и нутрометра можно делать замеры с точностью до 0,5 мм.

    Линейки лекальные поверочные применяется для проверки плоскостей на прямолинейность. При обработке плоскостей чаще всего пользуются проверочной лекальной линейкой, имеющей ножеобразную форму и скошенный под углом 45° конец, что дает возможность проверять прямолинейность деталей с углами. Продольные полукруглые канавки на боковых плоскостях линейки облегчают захват линейки рукой при работе. Лекальные линейки изготовляют трех типов: с двусторонним скосом (ЛД) длиной 80, 125, 200, 320 и 500 мм; трехгранные (ЛТ) — 200 и 320 мм и четырехгранные (ЛЧ) — 200, 320 и 500 мм. Изготовляются они из углеродистой или легированной стали. Для проверки прямолинейности накладывают на проверяемую поверхность и ведут проверку против света. Если на плоскости имеются какие-либо неровности, то свет будет проходить в промежутки между линейкой и впадинами на плоскости. Проверочное тонкое ребро закруглено под радиусом 0,1–0,2 мм, что позволяет наклонять линейку до 30° и таким образом лучше видеть световую щель между нею и проверяемой поверхностью. При проверке способом «следа» рабочим ребром линейки проводят по чистой проверяемой поверхности. Если поверхность прямолинейна, то на ней останется сплошной след, если — нет, то след будет прерывистым. Поверочные линейки с широкой рабочей поверхностью изготовляют четырех типов: прямоугольные ШП, двутавровые ШД, мостики ШМ, угловые трехгранные УТ. В зависимости от допустимых отклонений от прямолинейности поверочные линейки типов ШП, ШД, ШМ делят на 3 класса: 0; 1; 2, а линейки типа УТ — на 2 класса: 1-й и 2-й. Линейки 0-го и 1-го классов применяют для контрольных работ высокой точности, а линейки 2-го класса — для монтажных работ средней точности. Проверка прямолинейности и плоскостности этими линейками производится по линейным отклонениям и по краске. При измерении линейных отклонений от прямолинейности линейку укладывают на проверяемую поверхность или на две мерные плитки одинакового размера. Просветы между линейкой и контролируемой поверхностью измеряются щупом. Точные результаты дает применение полосок папиросной бумаги, которые с определенными интервалами укладывают под линейку. Вытягивая полоску из-под линейки, по величине силы прижатия каждой из них судят о величине отклонения от прямолинейности. При проверке «на краску» рабочую поверхность линейки покрывают тонким слоем краски, затем линейку накладывают на проверяемую поверхность и плавно без нажима перемещают по проверяемой поверхности. После этого линейку осторожно снимают и по расположению, количеству, величине пятен на поверхности судят о прямолинейности поверхности. Трехгранные поверочные линейки изготовляют с углами 45, 55, 60°.

    Поверочные плиты применяют для проверки широких поверхностей способом «на краску», а также используют в качестве вспомогательных приспособлений при различных контрольных работах в цеховых условиях. Плиты изготовляют из серого мелкозернистого чугуна. По точности рабочей поверхности плиты бывают четырех классов: 0, 1, 2 и 3-й. Первые три класса — поверочные плиты, четвертый — разметочные.

    Угольники применяются для проверки наружных и внутренних прямых углов. Существуют цельные угольники, изготовленные из одного куска металла и составные, сделанные из двух частей. Стороны угольника имеют разную длину. Длина короткой стороны равна примерно 2/3 длинной стороны.

    Угольники изготовляют из углеродистой инструментальной стали У8 или легированной инструментальной ХГ и подвергают закалке. Для проверки прямых углов угольник накладывают на проверяемую деталь. При проверке наружного угла угольник накладывают на деталь его внутренней частью, а при проверке внутреннего угла — наружной частью. Наложив угольник одной стороной на деталь, слегка прижимают его этой стороной к одной из сторон детали, другую сторону угольника совмещают с обрабатываемой стороной детали и по образовавшемуся просвету судят о правильности прямого угла.

    Малки предназначаются для контроля и перенесения углов различной величины на размечаемую поверхность. Существуют малки простые и двойные. Простая малка состоит из обоймы и линейки, помещенной на шарнире между двумя планками обоймы. Шарнирное крепление позволяет линейке занимать относительно обоймы положение под любым углом. Малку устанавливают на требуемый угол по образцу детали, по угловым плиткам или по транспортиру. Простой малкой можно переносить одновременно только один угол. Двойная малка состоит из трех линеек, поэтому ею можно переносить одновременно два разных угла.

    Штангенинструменты применяют для измерения наружных и внутренних диаметров, длин, толщин, глубин. Штангенциркули выпускаются трех типов: ШЦ-1, ШЦ-11, ЩЦ-111. Они изготовляются с пределами измерений: 0–125 мм (ШЦ-1), 0–160 (ШЦ-11), 0–400 (ШЦ-111) и с величиной отсчета 0,1 мм (ШЦ-1) и 0,05 мм (ШЦ 11, ШЦ-111).

    Штангенциркуль ШЦ-1 имеет штангу 1, на которой нанесена шкала с основными миллиметровыми делениями. На одном конце этой штанги имеются измерительные губки 2 и 7, а на другом конце линейка 6 для измерения глубин. По штанге перемещается подвижная рамка 3 с губками. Рамку в процессе измерения закрепляют на штанге зажимом 4. Нижние губки 7 служат для измерения наружных размеров, а верхние 2 — для внутренних размеров. На скошенные грани рамки 3 нанесена шкала 5 с дробными делениями, называемая нониусом. Нониус предназначен для определения дробной величины цены деления штанги, т. е. определения доли миллиметра. У нониуса цена деления составляет 1,9 мм. При измерении губки 7 должны прилегать друг к другу без просветов. Перед измерением при сомкнутых губках нулевые штрихи нониуса и штанги должны совпадать.

    При измерении деталь берут в левую руку, которая должна находиться за губками и захватывать деталь недалеко от губок. Правая рука должна поддерживать штангу, при этом большим пальцем этой руки перемещают рамку до соприкосновения губок с проверяемой поверхностью, не допуская перекоса губок при нормальном измерительном усилии. Большим и указательным пальцами правой руки рамку закрепляют зажимом, поддерживая штангу остальными пальцами этой руки. Левая рука при этом должна поддерживать губку штанги. При чтении показаний штангенциркуль держат прямо перед глазами. Целое число миллиметров отсчитывают по шкале штанги слева направо нулевым штрихом нониуса. Дробная величина определяется умножением величины отсчета на порядковый номер штриха нониуса, совпадающего со штрихом штанги.

    Штангенциркуль ШЦ-11 с величиной отсчета по нониусу 0,05 мм предназначен для наружных и внутренних измерений и разметки. Это высокоточный инструмент. Верхние губки штангенциркуля заострены и используются для разметочных работ. Цена деления нониуса составляет 1,95 мм. Для точной установки подвижной рамки относительно штанги штангенциркуль снабжен микрометрической подачей (винтом и гайкой).

    Штангенциркуль ШЦ-111 с величиной отсчета по нониусу 0,05 мм предназначен для наружных и внутренних измерений. Цена деления нониуса составляет 0,98 мм.

    Штангенглубиномер служит для измерения высот, глухих отверстий, канавок, пазов, выступов. Штангенглубиномеры изготовляют с пределами измерений 0–250 мм (величина отсчета по нониусу 0,05 мм) и 0–500 мм (величина отсчета по нониусу 0,1 мм). В некоторых случаях для измерения труднодоступных мест применяют глубиномер со штангами с изогнутым концом.

    Штангенрейсмасы предназначаются для измерения высот от плоских поверхностей и точной разметки. Он состоит из основания, в котором жестко закреплена штанга со шкалой, рамки с нониусом и стопорным винтом, устройства для микрометрической подачи, сменных ножек для разметки с острием и для измерения высоты, с двумя измерительными поверхностями, стопорного винта для закрепления ножки и державки на выступе рамки для игл разной длины. Для проверки нулевого отсчета перед использованием штангенрейсмасс устанавливают на поверочную плиту и рамку опускают вниз до соприкосновения измерительной поверхности ножки с плитой, при этом нулевой штрих шкалы нониуса должен совпадать с нулевым штрихом шкалы штанги. При измерении левой рукой прижимают основание к плите и подводят ножку к проверяемой поверхности, затем правой рукой с помощью микрометрической подачи доводят измерительную ножку до соприкосновения нижней части ножки с проверяемой поверхностью. Показания штангенрейсмаса читают так же, как и штангенциркуля. При измерении высоты верхней измерительной плоскостью необходимо к полученному размеру прибавить высоту ножек.

    Микрометр — прибор для измерения линейных размеров контактным способом. Существуют следующие типы микрометров: МК (гладкие) — для измерения наружных размеров; МЛ (листовые с циферблатом) — для измерения толщины листов и лент; МЗ (зубомерные) — для измерения зубчатых колес. Микрометры типа МК выпускают с пределами: 0–5; 0–10; 0– 15; 0–25; 25–50; 50–75; 75–100; 100–125; 125–150; 150–175; 175–200; 200–225; 225–250; 250–275; 275–300; 300–400; 400–500; 500–600 мм. Микрометры с верхним пределом измерения 50 мм и более снабжают установочными мерами (точными цилиндрическими стержнями).

    Микрометр имеет скобу с пяткой на одном конце, на другом — втулку-стебель, внутрь которой ввернут микрометрический винт. Торцы пятки и микрометрического винта являются измерительными поверхностями. На наружной поверхности стебля проведена продольная линия, ниже которой нанесены миллиметровые деления, а выше ее — полумиллиметровые деления. Винт жестко связан с барабаном, на коническую часть барабана нанесена шкала (нониус) с 50 делениями. Шаг микрометрического винта равен 0,5 мм. На головке микрометрического винта имеется устройство, обеспечивающее постоянное измерительное усилие. Для фиксирования полученного размера служит стопор. Перед измерением проверяют нулевое положение микрометра.

    Микрометрический глубиномер с точностью измерения 0,01 мм применяют для измерения глубины пазов, отверстий и высоты уступов до 100 мм. Глубиномеры изготовляют со сменными измерительными стержнями для измерения в пределах 0–25; 25–50; 50–75 и 75–100 мм. Шаг микрометрического винта — 0,5 мм. Перед измерением проверяют нулевое положение глубиномера. При измерении левой рукой прижимают основание глубиномера к верхней поверхности детали, а правой с помощью трещотки в конце хода доводят измерительный стержень до соприкосновения с другой поверхностью детали. Затем стопорят микрометрический винт и читают размер.

    Микрометрический нутрометр с ценой деления 0,01 мм предназначен для измерения внутренних размеров от 50–10 000 мм. Нутрометры с пределами измерений 1250–4000 мм и более поставляют с двумя головками: микрометрической и микрометрической с индикатором. Шаг резьбы микрометрической винтовой пары нутрометра равен 0,5 мм. Микрометрический нутрометр имеет стебель, в отверстие которого вставлен микрометрический винт. Концы стебля и микрометрический винт имеют сферические измерительные поверхности. На винт насажен барабан с установочной гайкой. В установленном положении микровинт закрепляют стопором. Для измерения отверстий более 63 мм используют удлинительные стержни с размерами: 25, 50, 100, 150, 200 и 600 мм. Без удлинителей измеряют размеры от 50 до 63 мм. Перед навинчиванием удлинителя со стебля свинчивают гайку, а после присоединения удлинителя ее навинчивают на резьбовый конец последнего стержня. Перед измерением микрометрическую головку устанавливают по установочной скобе на исходный размер, проверяют нулевое положение, а затем выбирают наименьшее количество удлинителей. Измерение нутрометром отверстий производится по взаимно перпендикулярным диаметрам. Левой рукой прижимают измерительный наконечник к одной поверхности, а правой рукой вращают барабан до легкого соприкосновения с другой поверхностью. Отыскав наибольший размер, стопорят микровинт и читают размер.

    6. Технологический процесс

    Технологический процесс – это часть производственного процесса, непосредственно связанная с изменением формы, размеров или физических свойств материалов или полуфабрикатов до получения изделия требуемой конфигурации и качества. Технологический процесс определяется также как часть производственного процесса, содержащая действия по изменению и последующему определению состояния предмета производства.

    Технологический процесс состоит из операций.

    Операция – это часть технологического процесса, выполняемая слесарем на одном рабочем месте с использованием или без использования механизированного или ручного инструмента, механизмов, приспособлений при обработке одной детали.

    Примеры операций: выполнение канавки для смазки на подшипнике скольжения, нарезание винтовой поверхности на стержне, нарезание резьбы в отверстии и др.

    Элементами технологической операции являются установ, технологический переход, вспомогательный переход, рабочий ход, вспомогательный ход, позиция.

    Установ – часть технологической операции, выполняемая при неизменном закреплении обрабатываемой детали или собираемой сборочной единицы. Например, сверление в детали одного или нескольких отверстий разного диаметра при неизменном закреплении детали, нарезание резьбы на стержне.

    Технологический переход – законченная часть операции, характеризуемая постоянством применяемого инструмента и поверхностей, образуемых при обработке или соединяемых при сборке. Например, сверление детали сверлом одного диаметра или соединение втулки с валом.

    Вспомогательный переход – часть операции без изменения геометрии обрабатываемой поверхности или положения собираемых деталей, необходимая для выполнения технологического перехода (установка заготовки, смена инструментов и т. д.).

    Рабочий ход – законченная часть операции, связанная с однократным перемещением инструмента относительно обрабатываемой детали, необходимая для осуществления изменения геометрии детали.

    Вспомогательный ход не связан с изменением геометрии детали, но необходим для осуществления рабочего хода.

    Позиция – это фиксированное положение, занимаемое закрепленной обрабатываемой деталью или собираемой сборочной единицей совместно с приспособлением относительно инструмента или неподвижной части оборудования для выполнения определенной части операции.

    Карта технологического процесса является технологическим документом, содержащим описание процесса изготовления, сборки или ремонта изделия (включая контроль и перемещения) по всем операциям одного вида работ, выполняемых в одном цехе, в технологической последовательности с указанием данных о средствах технологического оснащения, материальных и трудовых нормативах. В ней определяются также место работы, вид и размеры материала, основные поверхности обработки детали и ее установка, рабочий инструмент и приспособления, а также продолжительность каждой операции.

    Технологический процесс разрабатывается на основе чертежа, который для массового и крупносерийного производства должен быть выполнен очень детально. При единичном производстве часто дается только маршрутный технологический процесс с перечислением операций, необходимых для обработки или сборки.

    Время, необходимое для изготовления изделия при единичном и мелкосерийном производстве, устанавливается приблизительно на основе хронометража или принятых норм, а при крупносерийном и массовом производстве – на основе расчетно-технических норм.
    Базированием называется придание заготовке или изделию требуемого положения относительно выбранной системы координат.

    База – это поверхность, сочетание поверхностей, ось или точка, принадлежащие заготовке либо изделию и используемые для базирования.

    По назначению базы подразделяются на конструкторские, основные, вспомогательные, технологические и измерительные.

    Конструкторская база используется для определения положения детали или сборочной единицы в изделии.

    Основная база – это конструкторская база, принадлежащая данной детали или сборочной единице и используемая для определения ее положения в изделии. Например, основными базами вала, собираемого с подшипниками, являются его опорные шейки и упорный буртик или фланец.

    Вспомогательная база – это конструкторская база, принадлежащая данной детали или сборочной единице и используемая для определения положения присоединяемого к ним изделия. Например, при соединении вала с фланцевой втулкой вспомогательной базой может быть посадочный диаметр вала, его буртик и шпонка.

    Технологическая база – это поверхность, сочетание поверхностей или ось, используемые для определения положения заготовки либо изделия в процессе изготовления или ремонта. Например, плоскость основания детали и два базовых отверстия.

    Измерительная база используется для определения относительного положения заготовки или изделия и средств измерения.



    1   2


    написать администратору сайта