Главная страница

Занятие 2. бх занятие 2. 1. Структурная организация белковой молекулы. Четыре уровня структурной организации белка


Скачать 48.15 Kb.
Название1. Структурная организация белковой молекулы. Четыре уровня структурной организации белка
АнкорЗанятие 2
Дата05.03.2021
Размер48.15 Kb.
Формат файлаdocx
Имя файлабх занятие 2.docx
ТипДокументы
#182094

1. Структурная организация белковой молекулы. Четыре уровня структурной организации белка.

Последовательность чередования аминокислотных остатков в полипептидной цепи называется первичной структурой белка.

Закручивание полипептидной цепи белка в спиралеобразную структуру (α-спираль) происходит вследствие взаимодействия посредством образования водородных связей между кислородом карбонильной группы i-го аминокислотного остатка и водородом амидогруппы i+4 аминокислотного остатка:

Наряду со спирализованными участками в образовании вторичной структуры белка принимают также участие β-структуры параллельная и антипараллельная, и β-изгиб.

При упаковке вторичной структуры белка в пространстве образуется третичная структура белка, состоящая из всех компонентов вторичной структуры. При образовании третичной структуры белка происходят гидрофобные, ионные (электростатические), водородные ковалентные взаимодействия между группировками в боковых радикалах аминокислотных остатков полипептидной цепи.

С появлением третичной структуры у белка появляются и новые свойства – биологические. В частности, проявление каталитических свойств связано именно с наличием у белка третичной структуры. И наоборот, нагревание белков, приводящее к разрушению третичной структуры (иначе известно как денатурация) одновременно приводит к утрате биологических свойств.

Четвертичная структура белка подразумевает такое объединение белков третичной структуры, при котором появляются новые биологические свойства, не характерные для белка в третичной структуре. Каждый из белков – участников третичной структуры – при образовании четвертичной структуры называют субъединицей или протомером. В образовании четвертичной структуры белка принимают участие те же связи, что и при образовании третичной структуры, за исключением ковалентных.

2. Первичная структура белка. Методы определения первичной структуры белков. Значение первичной структуры для нормального функционирования белков (на примере наследственных нарушений первичной структуры и функций гемоглобинов A).

Первичной структурой белков называется линейная полипептидная цепь из аминокислот, соединенных между собой пептидными связями. Первичная структура - простейший уровень структурной организации белковой молекулы. Высокую стабильность ей придают ковалентные пептидные связи между α-аминогруппой одной аминокислоты и α-карбоксильной группой другой аминокислоты.

Методы определения первичной структуры белка:

Деградация по Эдмону

К раствору белка добавляют реактив Эдмона, содержащий фенилизотиоцианат. Фенилизотиоцианат взаимодействует с альфа-аминогруппой первой (N-концевой) аминокислоты, а затем происходит ее отщепление от полипептидной цепи путем гидролиза. После этого идентифицируют первую аминокислоту. Затем процесс повторяется.

Секвенирование ДНК

Первичная структура любой белковой молекулы напрямую зависит от структуры ДНК-генома. Поэтому сначала выделяют ген, в котором закодирована структура белка. Далее определяют последовательность азотистых оснований в ДНК. Каждая аминокислота в белковой молекуле закодирована сочетанием трех азотистых оснований - триплетом (кодоном) в молекуле ДНК. Например, сочетание трех оснований аденина (ААА) кодирует аминокислоту фенилаланин, а последовательность из трех оснований цитозина – глицин. Это дает возможность получить информацию о первичной структуре белковой молекуле.

Рентгеноструктурный анализ

В результате облучения на фотопленке фиксируется карта электронной плотности (похожа на географическую карту). Далее производится компьютерный анализ полученного изображения, в результате чего строится пространственная модель белковой молекулы.

Электронная микроскопия

Может быть использована для выяснения структуры белковых молекул с большой молекулярной массой – от 500.000 до 1.000.000 Да (дальтон). Дальтон (Да) и килодальтон (кДа) – единицы измерения массы белков. 1кДа=103 Да. 1 дальтон равен 1/16 массы атома кислорода (кислородная единица массы).

Замена аминокислоты на поверхности гемоглобина А

Вмолекуле гемоглобина S (так назван аномальный гемоглобин) мутантными оказались 2 β-цепи, в которых глутамат, высокополярная отрицательно заряженная аминокислота в положении 6 была заменена валином, содержащим гидрофобный радикал.

В дезоксигемоглобине S имеется участок, комплементарный другому участку таких же молекул, содержащему изменённую аминокислоту. В результате молекулы дезоксигемоглобина начинают "слипаться", образуя удлинённые фибриллярные агрегаты, деформирующие эритроцит и приводящие к образованию аномальных эритроцитов в виде серпа.

В оксигемоглобине S комплементарный участок "замаскирован" в результате изменения конформации белка. Недоступность участка препятствует соединению молекул оксигемоглобина S друг с другом. Следовательно, образованию агрегатов HbS способствуют условия, повышающие концентрацию дезоксигемоглобина в клетках (физическая работа, гипоксия, уменьшение рН, условия высокогорья, полёт на самолёте).

Так как "серповидные" эритроциты плохо проходят через капилляры тканей, они часто закупоривают сосуды и создают тем самым локальную гипоксию. Это повышает концентрацию дезоксигемоглобина S в эритроцитах, скорость образования агрегатов гемоглобина S и ещё большую деформацию

эритроцитов. Нарушение доставки О2 в ткани вызывает боли "даже некроз клеток в данной области. Серповидно-клеточная анемия - гомозиготное рецессивное заболевание; проявляется только в том случае, когда от обоих родителей наследуются 2 мутантных гена β-цепей глобина. После рождения ребёнка болезнь не проявляется до тех пор, пока значительные количества HbF не заместятся на HbS. У больных выявляют клинические симптомы, характерные для анемии: головокружение и головные боли, одышка, учащённое сердцебиение, боли в конечностях, повышенную восприимчивость к инфекционным заболеваниям.

3. Вторичная структура белка. Силы, стабилизирующие вторичную структуру. Основные типы вторичной структуры (α-спираль, β-складчатая структура). Препятствия к образованию определенных видов вторичной структуры.

Вторичная структура белков - пространственная структура, образующаяся в результате взаимодействий между функциональными группами, входящими в состав пептидного остова. При этом пептидные цепи могут приобретать регулярные структуры двух типов: α-спираль и β-структура.

Она стабилизирована водородными связями, которые замыкаются между пептидными, амидными (-N-H) и карбонидными (-C=O)группами, т.е. входят в пептидную единицу, и дисульфидными мостиками между остатками цистеина

α-спираль

Пептидный остов закручивается в виде спирали за счёт образования водородных связей между атомами кислорода карбонильных групп и атомами азота аминогрупп, входящих в состав пептидных групп через 4 аминокислотных остатка. Водородные связи ориентированы вдоль оси спирали. На один виток α-спирали приходится 3,6 аминокислотных остатка.

В образовании водородных связей участвуют практически все атомы кислорода и водорода пептидных групп. В результате α-спираль "стягивается" множеством водородных связей. Несмотря на то, что данные связи относят к разряду слабых, их количество обеспечивает максимально возможную стабильность α -спирали. Так как все гидрофильные группы пептидного остова обычно участвуют в образовании водородных связей, гидрофильность (т.е. способность образовывать водородные связи с водой) α-спиралей уменьшается, а их гидрофобность увеличивается.

α-Спиральная структура - наиболее устойчивая конформация пептидного остова, отвечающая минимуму свободной энергии. В результате образования α-спиралей полипептидная цепь укорачивается, но, если создать условия для разрыва водородных связей, полипептидная цепь вновь удлинится.

Радикалы аминокислот находятся на наружной стороне α-спирали и направлены от пептидного остова в стороны. Они не участвуют в образовании водородных связей, характерных для вторичной структуры, но некоторые из них могут нарушать формирование α-спирали. К ним относят:

-пролин. Его атом азота входит в состав жёсткого кольца, что исключает возможность вращения вокруг -N-CH- связи. Кроме того, у атома азота пролита, образующего пептидную связь с другой аминокислотой, нет атома водорода. В результате пролин не способен образовать водородную связь в данном месте пептидного остова, и α-спиральная структура нарушается. Обычно в этом месте пептидной цепи возникает петля или изгиб;

-участки, где последовательно расположены несколько одинаково заряженных радикалов, между которыми возникают электростатические силы отталкивания;

-участки с близко расположенными объёмными радикалами, механически нарушающими формирование α-спирали, например метионин, триптофан.

β-Структура

β -Структура формируется за счёт образования множества водородных связей между атомами пептидных групп линейных областей одной полипептидной цепи, делающей изгибы, или между разными полипептидными цепями, β -Структура образует фигуру, подобную листу, сложенному "гармошкой", - β -складчатый слой.

Когда водородные связи образуются между атомами пептидного остова различных полипептидных цепей, их называют межцепочечными связями. Водородные связи, возникающие между линейными участками внутри одной полипептидной цепи, называют внутрицепочечными. В β -структурах водородные связи расположены перпендикулярно полипептидной цепи.

Если связанные полипептидные цепи направлены противоположно, возникает антипараллельная β -структура, если же N- и С-концы полипептидных цепей совпадают, образуется структура параллельного-складчатого слоя.

В отличие от β-спиралей, разрыв водородных связей, формирующих β-структуры, не вызывает удлинения данных участков полипептидных цепей.

Как β-спираль, так и β-структуры обнаружены в глобулярных и фибриллярных белках.

4. Третичная структура белка. Типы химических связей, участвующих в формировании третичной структуры. Взаимосвязь первичной и третичной структуры. Понятие о нативной конформации белка.

Третичная структура белков - трёхмерная пространственная структура, образующаяся за счёт взаимодействий между радикалами аминокислот, которые могут располагаться на значительном расстоянии друг от друга в полипептидной цепи.

Связи, участвующие в формировании третичной структуры белков

Гидрофобные взаимодействия

При укладке полипептидная цепь белка стремится принять энергетически выгодную форму, характеризующуюся минимумом свободной энергии. Поэтому гидрофобные радикалы аминокислот стремятся к объединению внутри глобулярной структуры растворимых в воде белков. Между ними возникают так называемые гидрофобные взаимодействия, а также силы ван дер Ваальса между близко прилегающими друг к другу атомами. В результате внутри белковой глобулы формируется гидрофобное ядро. Гидрофильные группы пептидного остова при формировании вторичной структуры образуют множество водородных связей, благодаря чему исключается связывание с ними воды и разрушение внутренней, плотной структуры белка.

Ионные и водородные связи.

 Гидрофильные радикалы аминокислот стремятся образовать водородные связи с водой и поэтому в основном располагаются на поверхности белковой молекулы.

Все гидрофильные группы радикалов аминокислот, оказавшиеся внутри гидрофобного ядра, взаимодействуют друг с другом с помощью ионных и водородных связей.

Ионные связи могут возникать между отрицательно заряженными (анионными) карбоксильными группами радикалов аспарагиновой и глутаминовой кислот и положительно заряженными (катионными) группами радикалов лизина, аргинина или гистидина.

Водородные связи возникают между гидрофильными незаряженными группами (такими как -ОН, -CONH2, SH-группы) и любыми другими гидрофильными группами. Белки, функционирующие в неполярном (липидном) окружении, например белки мембран, имеют обратное устройство: гидрофильные радикалы аминокислот расположены внутри белка, в то время как гидрофобные аминокислоты локализованы на поверхности молекулы и контактируют с неполярным окружением. В каждом случае радикалы аминокислот занимают наиболее выгодное биоэнергетическое положение.

Ковалентные связи.

 Третичную структуру некоторых белков стабилизируют дисульфидные связи, образующиеся за счёт взаимодействия SH-групп двух остатков цистеина. Эти два остатка цистеина могут находиться далеко друг от друга в линейной первичной структуре белка, но при формировании третичной структуры они сближаются и образуют прочное ковалентное связывание радикалов.

Большинство внутриклеточных белков лишено дисульфидных связей. Однако такие связи распространены в белках, секретируемых клеткой во внеклеточное пространство. Полагают, что эти ковалентные связи стабилизируют кон-формацию белков вне клетки и предотвращают их денатурацию. К таким белкам относят гормон инсулин и иммуноглобулины.

Все белки с одинаковой первичной структурой, находящиеся в одинаковых условиях, приобретают одинаковую, характерную для данного индивидуального белка конформацию, определяющую его специфическую функцию. Функционально активную конформацию белка называют "нативная структура".

5. Образование третичной структуры белка из элементов вторичной структуры, устойчивые комбинации элементов вторичной структуры, супервторичная структура, структурные мотивы. Форма белков как результат третичной структурной организации. Глобулярные и фибриллярные белки. Доменная организация белков. Понятие о доменах.

Совокупность первичной, вторичной, третичной структур составляет конформацию белковой молекулы. Прижизненная (нативная) конформация формируется самопроизвольно, и её образование носит название фолдинг. Конформация белков очень не устойчива и формируется при участии особых белков – шаперонов (компаньонов). Шапероны способны связываться с частично денатурированными, находящимися в неустойчивом состоянии белками, и восстанавливать их нативную конформацию.

По конформации все белки делятся на три группы:

· фибриллярные белки: коллаген, эластин, фиброин;

· глобулярные белки: гемоглобин, альбумин, глобулин;

· смешанные белки: миозин.

Третичная структура присуща всем белкам.

Денатурация – нарушение вторичной, 3, 4 структуры белка.

При денатурации белковая молекула теряет свою прижизненную (нативную) структуру и переходит в форму неупорядоченного клубка, на поверхности которого располагается много гидрофобных групп, что резко снижает растворимость белка.

В разных по первичной структуре и функциям белках иногда выявляются сходные сочетания и взаиморасположение вторичных структур, которые называются супервторичной структурой. Она занимает промежуточное положение между вторичной и третичной структурами, поскольку это специфическое сочетание элементов вторичной структуры при формировании третичной структуры белка. Супервторичные структуры имеют специфические названия, такие как «α-спираль-поворот-а-спираль», «лейциновая застежка молния», «цинковые пальцы» и др. Такие супервторичные структуры характерны для ДНК-связывающих белков. Доменами называют области в третичной структуре белка с определенной структурной автономией. Домены составляют подуровень структурной организации белка на пути от вторичной к третичной структуре, и свертывание достаточно крупных белковых глобул при биосинтезе белка проходит, вероятно, через стадию формирования доменов. Как правило, домены могут независимо от других частей белковой молекулы поддерживать и даже формировать пространственную структуру. Удается выделить домены с помощью ограниченного протеолиза.

«Лейциновая застежка-молния». Этот вид супервторичной структуры используется для соединения двух белков. «Цинковый палец»- вариант супервторичной структуры, характерный для ДНК-связывающих белков, имеет вид вытянутого фрагмента на поверхности белка и содержит около 20 аминокислотных остатков

Глобулярные белки́ — белки, в молекулах которых полипептидные цепи плотно свёрнуты в компактные шарообразные структуры — глобулы (третичные структуры белка)

Глобулярная структура белков обусловлена гидрофобно-гидрофильными взаимодействиям

Фибриллярные белки — белки, имеющие вытянутую нитевидную структуру, в которой отношение поперечной оси к продольной больше 1:10. Большинство фибриллярных белков не растворяется в воде, имеет большую молекулярную массу и высоко регулярную пространственную структуру, которая стабилизируется, главным образом, взаимодействиями (в том числе и ковалентными) между различными полипептидными цепями. Первичная и вторичная структура фибриллярного белка также, как правило, регулярна[1]. Полипептидные цепи многих фибриллярных белков расположены параллельно друг другу вдоль одной оси и образуют длинные волокна (фибриллы) или слои.

6. Четвертичная структура белка. Принципиальное отличие четвертичной структуры от низших уровней структурной организации белка. Взаимодействия между субъединицами, стабилизирующие четвертичную структуру. Структурная организация контактов между субъединицами. Гомоолигомеры и гетероолигомеры.

Четвертичная структура белка. Принципиальное отличие четвертичной структуры от низших уровней структурной организации белка.

Четвертичная структура белка подразумевает такое объединение белков третичной структуры, при котором появляются новые биологические свойства, не характерные для белка в третичной структуре. Каждый из белков – участников третичной структуры – при образовании четвертичной структуры называют субъединицей или протомером. В образовании четвертичной структуры белка принимают участие те же связи, что и при образовании третичной структуры, за исключением ковалентных.

Практически все белки-ферменты имеют четвертичную структуру и состоят, как правило, из четного числа протомеров (двух, четырех, шести, восьми).

Взаимодействия между субъединицами, стабилизирующие четвертичную структуру.

Четвертичная структура − это надмолекулярное образование, состоящее из двух и более полипептидных цепей, связанных между собой нековалентно, а водородными связями, электростатическими, диполь-дипольные и гидрофобными взаимодействиями между остатками аминокислот, находящихся на поверхности.

Примером может служить молекула гемоглобина, вирус табачной мозаики (2130 субъединиц).

Каждый из белков-участников третичной структуры при образовании четвертичной структуры называют субъединицей или протомером. Образовавшуюся молекулу называют олигомером, или мультимером. Олигомерные белки чаще построены из четного количества протомеров с одинаковыми или разными молекулярными массами.

В образовании четвертичной структуры белка принимают участие те же связи, что и при образовании третичной структуры, за исключением ковалентных.

Объединение белковых молекул третичной структуры без появления новых биологических свойств называют агрегированным состоянием. Как четвертичная структура, так и агрегированное состояние могут быть обратимо разрушены с применением детергентов, в частности, додецилсульфата натрия или неионных детергентов типа тритона.

Субъединицы, образующие четвертичную структуру белка, могут быть различными как по строению, так и по функциональным свойствам (гетеромеры). Это позволяет объединить в одной структуре несколько взаимосвязанных функций, создать полифункциональную молекулу.

В гомомерных белках субъединицы одинаковы.

Структурная организация контактов между субъединицами.

Все белки, у которых обнаружена четвертичная структура, выделены в виде индивидуальных макромолекул, не распадающихся на субъединицы. Контакты между поверхностями субъединиц возможны только за счет полярных групп аминокислотных остатков, поскольку при формировании третичной структуры каждой из полипептидных цепей боковые радикалы неполярных аминокислот (составляющих большую часть всех протеиногенных аминокислот) спрятаны внутри субъединицы. Между их полярными группами образуются многочисленные ионные (солевые), водородные, а в некоторых случаях и дисульфидные связи, которые прочно удерживают субъединицы в виде организованного комплекса. Применение веществ, разрывающих водородные связи, или веществ, восстанавливающих дисульфидные мостики, вызывает дезагрегацию протомеров и разрушение четвертичной структуры белка.

Олигомерами называются белковые комплексы, состоящие из двух и более субъединиц. При этом, комплексы из одинаковых субъединиц называются гомо-олигомерами, а из разных — гетеро-олигомерами.

7. Конформационная лабильность белков. Денатурация и ренатурация. Обратимая и необратимая денатурация. Признаки денатурации. Денатурирующие факторы. Защита от денатурации специализированными белками теплового шока (шаперонами). Применение денатурирующих агентов в биологических исследованиях и медицине.

Конформационная лабильность белков

Гидрофобные взаимодействия, а также ионные и водородные связи относят к числу слабых, так как их энергия лишь ненамного превышает энергию теплового движения атомов при комнатной температуре (т.е. уже при данной температуре возможен разрыв таких связей).

Поддержание характерной для белка конформации возможно благодаря возникновению множества слабых связей между различными участками полипептидной цепи.

Однако белки состоят из огромного числа атомов, находящихся в постоянном (броуновском) движении, что приводит к небольшим перемещениям отдельных участков полипептидной цепи, которые обычно не нарушают общую структуру белка и его функции. Следовательно, белки обладают конформационной лабильностью - склонностью к небольшим изменениям конформации за счёт разрыва одних и образования других слабых связей. Конформация белка может меняться при изменении химических и физических свойств среды, а также при взаимодействии белка с другими молекулами. При этом происходит изменение пространственной структуры не только участка, контактирующего с другой молекулой, но и конформации белка в целом. Конформационные изменения играют огромную роль в функционировании белков в живой клетке.

Денатурация и ренатурация

Денатурация белков (лат. denaturatus — лишенный природных свойств; от de- — приставка, означающая отделение, удаление + natura — природа, естество) — термин биологической химии, означающий потерю белками их естественных свойств (растворимости, гидрофильности и др.) вследствие нарушения пространственной структуры их молекул.

Ренатурация — процесс, обратный денатурации, при котором белки возвращают свою природную структуру.(При нагревании двухцепочечных молекул ДНК до темп-ры ок. 100°С водородные связи между основаниями разрываются, и комплементарные цепи расходятся — ДНК денатурирует. Однако при медленном охлаждении комплементарные цепи могут вновь соединяться в регулярную двойную спираль. Эта способность ДНК к Р. используется для получения искусств, гибридных молекул ДНК (т. н. молекулярная гибридизация).

Денатурация может быть:

Обратимой, если возможно восстановление свойственной белку структуры. Такой денатурации подвергаются, например, рецепторные белки мембраны.

Необратимой, если восстановление пространственной конфигурации белка невозможно. Обычно это происходит при разрыве большого количества связей, например, при варке яиц.

Признаки денатурации:

1.Уникальная трехмерная структура каждого белка разрушается, и все молекулы одного белка приобретают случайную конформацию, т. е. отличную от других таких же молекул.

2. Радикалы аминокислот, формирующие активный центр белка, оказываются пространственно удаленными друг от друга, т. е. разрушается специфический центр связывания белка с лигандом.

3. Гидрофобные радикалы, обычно находящиеся в гидрофобном ядре глобулярных белков, при денатурации оказываются на поверхности молекулы, тем самым создаются условия для агрегации белков. Агрегаты белков выпадают в осадок.

4. При денатурации белков не происходит разрушения их первичной структуры.

Денатурирующие факторы:

Факторы, которые вызывают денатурацию белков, можно разделить на физические и химические.

Физические факторы

1. Высокие температуры. Для разных белков характерна различная чувствительность к тепловому воздействию. Часть белков подвергается денатурации уже при 40-500С. Такие белки называют термолабильными. Другие белки денатурируют при гораздо более высоких температурах, они являются термостабильными.

2. Ультрафиолетовое облучение

3. Рентгеновское и радиоактивное облучение

4. Ультразвук

5. Механическое воздействие (например, вибрация).

Химические факторы

1. Концентрированные кислоты и щелочи. Например, трихлоруксусная кислота (органическая), азотная кислота (неорганическая).

2. Соли тяжелых металлов (например, CuSO4).

3. Органические растворители (этиловый спирт, ацетон)

4. Растительные алкалоиды.

5. Мочевина в высоких концентрациях

Роль шаперонов в защите белков клеток от денатурирующих стрессовых воздействий

Шапероны, участвующие в защите клеточных белков от денатурирующих воздействий, как уже говорилось выше, относят к белкам теплового шока (БТШ) . При действии различных стрессовых факторов (высокая температура, гипоксия, инфекция, УФО, изменение рН среды, изменение молярности среды, действие токсичных химических веществ, тяжёлых металлов и т.д.) в клетках усиливается синтез БТШ. Имея высокое сродство к гидрофобным участкам частично денатурированных белков, они могут препятствовать их полной денатурации и восстанавливать нативную конформацию белков.1. В биохимических исследованиях перед определением в биологическом материале низкомолекулярных соединений обычно из раствора удаляют белки. Для этой цели чаще всего используется трихлоруксусная кислота (ТХУ). После добавления ТХУ в раствор денатурированные белки выпадают в осадок и легко удаляются фильтрованием (табл. 1).

2. В медицине денатурирующие агенты часто применяют для стерилизации медицинского инструмента и материала в автоклавах (денатурирующий агент - высокая температура) и в качестве антисептиков (спирт, фенол, хлорамин) для обработки загрязненных поверхностей, содержащих патогенную микрофлору

8. Физико-химические свойства белков. Молекулярная масса, размеры и форма, растворимость, ионизация и гидратация. Зависимость физико-химических свойств от первичной и пространственной структуры белка. Использование различий в физикохимических свойствах белков в методах их выделения и исследования.

Различия белков по молекулярной массе. Белки - высокомолекулярные соединения, но могут сильно отличаться по молекулярной массе, которая колеблется от 6000 до 1 000 000 Да и выше. Молекулярная масса белка зависит от количества аминокислотных остатков в полипептидной цепи, а для олигомерных белков - и от количества входящих в него протомеров (или субъединиц).

Различия белков по форме молекул. По форме молекул белки делят на глобулярные и фибриллярные. Глобулярные белки имеют более компактную структуру, их гидрофобные радикалы в большинстве своём спрятаны в гидрофобное ядро, и они значительно лучше растворимы в жидкостях организма, чем фибриллярные белки (исключение составляют мембранные белки).

Различия по растворимости белковРастворимость белков в воде зависит от формы, молекулярной массы, величины заряда, соотношения полярных и неполярных функциональных групп на поверхности белка. Кроме этого, растворимость белка определяется составом растворителя, т.е. наличием в растворе других растворённых веществ. Например, некоторые белки легче растворяются в слабом солевом растворе, чем в дистиллированной воде. С другой стороны, увеличение концентрации нейтральных солей может способствовать выпадению определённых белков в осадок. Денатурирующие агенты, присутствующие в растворе, также снижают растворимость белков.

Различия по гидратации.На поверхности большинства внутриклеточных белков преобладают полярные радикалы, однако соотношение полярных и неполярных групп отлично для разных индивидуальных белков. Так, протомеры олигомерных белков в области контактов друг с другом часто содержат гидрофобные радикалы. Поверхности белков, функционирующих в составе мембран или прикрепляющиеся к ним в процессе функционирования, также обогащены гидрофобными радикалами. Такие белки лучше растворимы в липидах, чем в воде.

Различия по ионизации.Белки имеют в своём составе радикалы лизина, аргинина, гистидина, глутаминовой и аспарагиновой кислот, содержащие функциональные группы, способные к ионизации (ионогенные группы). Кроме того, на N- и С-концах полипептидных цепей имеются α-амино- и α-карбоксильная группы, также способные к ионизации. Суммарный заряд белковой молекулы зависит от соотношения ионизированных анионных радикалов Глу и Асп и катионных радикалов Лиз, Apг и Гис. Значение рН, при котором белок приобретает суммарный нулевой заряд, называют"изоэлектрическая точкаи обозначают как pI. В изоэлектрической точке количество положительно и отрицательно заряженных групп белка одинаково, т.е. белок находится в изоэлектрическом состоянии. Так как большинство белков в клетке имеет в своём составе больше анионогенных групп (-СОО-), то изоэлектрическая точка этих белков лежит в слабокислой среде. Изоэлектрическая точка белков, в составе которых преобладают катионогенные группы, находится в щелочной среде.

Зависимость физико-химических свойств от первичной и пространственной структуры белка.

Использование различий в физикохимических свойствах белков в методах их выделения и исследования.

Индивидуальные белки различаются по своим физико-химическим свойствам: форме молекул, молекулярной массе, суммарному заряду молекулы, соотношению полярных и неполярных групп на поверхности нативной молекулы белка, растворимости белков, а также степени устойчивости к воздействию денатурирующих агентов.

Получение индивидуальных белков из биологического материала (тканей, органов, клеточных культур) требует проведения последовательных операций, включающих:

-дробление биологического материала и разрушение клеточных мембран;

-фракционирование органелл, содержащих те или иные белки;

-экстракцию белков (перевод их в растворённое состояние);

-разделение смеси белков на индивидуальные белки.

Метод очистки белков, основанный на различиях в их растворимости при разной концентрации соли в растворе. Соли щелочных и щёлочно-земельных металлов вызывают обратимое осаждение белков, т.е. после их удаления белки вновь приобретают способность растворяться, сохраняя при этом свои нативные свойства.

Чаще всего для разделения белков методом высаливания используют разные концентрации солей сульфата аммония - (NH4)2SO4. Чем выше растворимость белка, тем большая концентрация соли необходима для его высаливания.

Гель-фильтрация, или метод молекулярных сит

Для разделения белков часто используют хроматографические методы, основанные на распределении веществ между двумя фазами, одна из которых подвижная, а другая неподвижная. В основу хроматографических методов положены разные принципы: гель-фильтрации, ионного обмена, адсорбции, биологического сродства.

Метод разделения белков с помощью гель-фильтрационной хроматографии основан на том, что вещества, отличающиеся молекулярной массой, по-разному распределяются между неподвижной и подвижной фазами. Хроматографическая колонка заполняется гранулами пористого вещества (сефадекс, агароза и др.). В структуре полисахарида образуются поперечные связи и формируются гранулы с "порами", через которые легко проходят вода и низкомолекулярные вещества. В зависимости от условий можно формировать гранулы с разной величиной "пор".

Неподвижная фаза - жидкость внутри гранул, в которую способны проникать низкомолекулярные вещества и белки с небольшой молекулярной массой. Смесь белков, нанесённую на хроматографическую колонку, вымывают (элюируют), пропуская через колонку растворитель. Вместе с фронтом растворителя движутся и самые крупные молекулы.

Более мелкие молекулы диффундируют внутрь гранул сефадекса и на некоторое время попадают в неподвижную фазу, в результате чего их движение задерживается. Величина пор определяет размер молекул, способных проникать внутрь гранул.

Электрофорез белков

Метод основан на том, что при определённом значении рН и ионной силы раствора белки двигаются в электрическом поле со скоростью, пропорциональной их суммарному заряду. Белки, имеющие суммарный отрицательный заряд, двигаются к аноду (+), а положительно заряженные белки - к катоду (-).

Электрофорез проводят на различных носителях: бумаге, крахмальном геле, полиакриламидном геле и др. В отличие от электрофореза на бумаге, где скорость движения белков пропорциональна только их суммарному заряду, в полиакриламидном геле скорость движения белков пропорциональна их молекулярным массам.

Разрешающая способность электрофореза в полиакриламидном геле выше, чем на бумаге. Так, при электрофорезе белков сыворотки крови человека на бумаге обнаруживают только 5 главных фракций: альбумины, α1 глобулины, α2-глобулины, β-глобулины и γ-глобулины. Электрофорез тех же белков в полиакриламидном геле позволяет получить до 18 различных фракций. Для обнаружения белковых фракций полоски бумаги или столбики геля обрабатывают красителем (чаще всего бромфеноловым синим или амидовым чёрным). Окрашенный комплекс белков с красителем выявляет расположение различных фракций на носителе.

Ионообменная хроматография

Так же как и электрофорез, метод основан на разделении белков, различающихся суммарным зарядом при определённых значениях рН и ионной силы раствора. При пропускании раствора белков через хроматографическую колонку, заполненную твёрдым пористым заряженным материалом, часть белков задерживается на нём в результате электростатических взаимодействий.

В качестве неподвижной фазы используют ионообменники - полимерные органические вещества, содержащие заряженные функциональные группы.

Аффинная хроматография, или хроматография по сродству

Это наиболее специфичный метод выделения индивидуальных белков, основанный на избирательном взаимодействии белков с лигандами, прикреплёнными (иммобилизированными) к твёрдому носителю. В качестве лиганда может быть использован субстрат или кофермент, если выделяют какой-либо фермент, антигены для выделения антител и т.д. Через колонку, заполненную иммобилизованным лигандом, пропускают раствор, содержащий смесь белков. К лиганду присоединяется только белок, специфично взаимодействующий с ним; все остальные белки выходят с элюатом. Белок, адсорбированный на колонке, можно снять, промыв её раствором с изменённым значением рН или изменённой ионной силой. В некоторых случаях используют раствор детергента, разрывающий гидрофобные связи между белком и лигандом.

Аффинная хроматография отличается высокой избирательностью и помогает очистить выделяемый белок в тысячи раз.

9. Коллоидные свойства растворов белков. Факторы устойчивости белка в растворе. Осаждение белков из растворов: механизм, способы устранения действия факторов устойчивости, обратимое и необратимое осаждение. Практическое применение осадителей.

Коллоидные свойства белков

Благодаря своему большому молекулярному весу и размерам, молекулы белка в растворе находятся в коллоидном состоянии. Белки являются гидрофильными коллоидами. При растворении белка вокруг каждой его молекулы образуется водная оболочка, в которой молекулы воды ориентированы в пространстве определенным образом. Вещества, разрушающие водные оболочки растворенных белков, вызывают выпадение их в осадок. К таким веществам относятся спирт, ацетон, нейтральные растворы солей щелочных металлов, растворы сульфата аммония. Процесс выпадения белка в осадок называется высаливанием. После удаления водоотнимающих веществ, при добавлении водыосадки белков вновь растворяются.

Одним из важнейших свойств белков, как лиофильных коллоидов, является их способность образовывать гели. При этом коллоидные частицы склеиваются друг с другом, образуя своеобразный каркас, в ячейки которого включается значительное количество молекул воды. Если гель высушить, а затем вновь поместить в воду, то он сильно набухает. Отделение воды от геля носит название синерезиса. При синерезисе гель уменьшается в объёме и сморщивается.

Факторы стабильности белков в растворе:

1. Состав п.п. цепи белка

2. Преимущественное расположение гидрофильных аминокислот на поверхности белковой глобулы. Большинство белков имеют гидрофильную поверхность.

3. Наличие спирализованных участков на поверхности белка.

4. Чем ниже относительная гидрофобность белков (т.е. ниже взаимодействие с липидами, а, следовательно, между глобулами и выше сила отталкивания), тем выше взаимодействие их с молекулами растворителя, следовательно выше растворимость.

5. Растворимость белков зависит от рН среды (в изоэлектрической точке имеют наименьшую растворимость)

6. От концентрации солей: невысокая концентрация (NaCl, Na2SO4, (NH4)2SO4 – повышает растворимость, т.к. ионы препятствуют ионному (электростатическому) взаимодействию заряженных боковых радикалов аминокислот; высокие концентрации солей снижают гидратацию глобулы (снимают гидратную оболочку) и тем саамы усиливают белок-белковые взаимодействия (белок выпадает в осадок – коагулирует).

7. От размеров и формы молекул: низкомолекулярные, глобулярные белки с большим количеством гидрофильных групп лучше растворимы в воде и слабо солевых растворах, а фибриллярные – хуже или не растворяются.

8. Денатурированные белки теряют способность к растворению.

Утрата хотя бы одного фактора устойчивости приводит к выпадению белка в осадок. Различают обратимое и необратимое осаждение белков. К обратимому относятся: высаливание и изоэлектрическое осаждение. Высаливание – обратимое осаждение белков под действием концентрированных растворов нейтральных солей щелочных или щелочноземельных металлов, или сульфата аммония. Механизм высаливания – утрата гидратной оболочки. Изоэлектрическая точка (рI) – значение рН среды, при котором молекула белка электронейтральна. В кислых белках преобладают кислые аминокислоты: аспарагиновая и глутаминовая кислота. В щелочных белках преобладают аминокислоты c дополнительной аминогруппой в радикале: аргинин и лизин. Для кислых и щелочных белков рI лежит в кислой и щелочной области рН, соответственно. Необратимое осаждение белков происходит в результате денатурации – утраты уникальной конфигурации белковой молекулы, которая сопровождается потерей биологической активности. В результате денатурации разрушаются все уровни структурной организации белка, кроме первичной.


написать администратору сайта