Главная страница
Навигация по странице:

  • Контрастные средства в ультразвуковой диагностике. Область применения.

  • Получение и использование в диагностике ультразвукового излучения. Ультразвуковой диагностический аппарат, его основные части.

  • 13.Определение радиофармацевтического препарата (РФП). Требования к РФП. Способы подведения РФП к исследуемому объекту.

  • 1. Свойства рентгеновского изучения. История открытие, применение


    Скачать 408.63 Kb.
    Название1. Свойства рентгеновского изучения. История открытие, применение
    Дата08.11.2020
    Размер408.63 Kb.
    Формат файлаdocx
    Имя файла12.docx
    ТипДокументы
    #148788
    страница3 из 4
    1   2   3   4


    9.Допплерография, ее виды. Область применения.

    одна из самых изящных инструментальных методик.Она основана на эффекте Допплера, названном так по имени австрийского ученого — физика и астронома. Этот эффект состоит в изменении длины волны (или частоты) при движении источника волн относительно принимающего их устройства. Он характерен для любых волн (свет, звук и т.д.).

    При приближении источника к приемнику длина волны уменьшается, а при удалении — увеличивается. На эффекте Допплера основана работа целого класса ультразвуковых диагностических приборов. Более того, в настоящее время допплерографию можно выполнять с помощью приборов для двухмерной ультразвуковой биолокации.

    Существуют два вида допплерографических исследований — непрерывный (постоянноволновой) и импульсный. При первом генерация ультразвуковых волн осуществляется непрерывно одним пьезокристаллическим элементом, а регистрация отраженных волн — другим. В электронном блоке прибора производится сравнение двух частот ультразвуковых колебаний: направленных на больного и отраженных от него. По сдвигу частот этих колебаний судят о скорости движения анатомических структур. Анализ сдвига частот может производиться акустически или с помощью самописцев.

    Непрерывная допплерография — простой и доступный метод исследования. Он наиболее эффективен при высоких скоростях движения крови, например в местах сужения сосудов. Однако у этого метода имеется существенный недостаток: частота отраженного сигнала изменяется не только вследствие движения крови в исследуемом сосуде, но и из-за любых других движущихся структур, которые встречаются на пути падающей ультразвуковой волны. Таким образом, при непрерывной допплерографии определяется суммарная скорость движения этих объектов.

    От указанного недостатка свободна импульсная допплерография. Она позволяет измерить скорость в заданном врачом участке контрольного объема. Размеры этого объема невелики - всего несколько миллиметров в диаметре, а его положение может произвольно устанавливать врач в соответствии с конкретной задачей исследования. В некоторых аппаратах скорость кровотока можно определять одновременно в нескольких (до 10) контрольных объемах. Такая информация отражает полную картину кровотока в исследуемой зоне тела пациента. Укажем, кстати, что изучение скорости кровотока иногда называют ультразвуковой флоуметрией.

    Результаты импульсного допплерографического исследования могут быть

    представлены врачу тремя способами: в виде количественных показателей

    скорости кровотока, в виде кривых и аудиально, т.е. тональными сигналами

    на звуковом выходе аппарата. Звуковой выход позволяет на слух дифференцировать однородное, правильное, ламинарное течение крови и вихревой

    турбулентный кровоток в патологически измененном сосуде. При записи

    на бумаге ламинарный кровоток характеризуется тонкой кривой, тогда как

    вихревое течение крови отображается широкой неоднородной кривой.

    Большое значение в клинической медицине, особенно в ангиологии,

    получила ультразвуковая ангиография, или цветное допплеровское картирование (рис. 11.41, 11.42). Метод основан на кодировании в цвете

    среднего значения допплеровского сдвига излучаемой частоты. При этом

    кровь, движущаяся к датчику, окрашивается в красный цвет, а от датчика — в синий. Интенсивность цвета возрастает с увеличением скорости кровотока. Иногда для усиления контрастирования в кровь вводят перфузат с микрочастицами, имитирующими эритроциты.

    Дальнейшим развитием допплеровского картирования стал так называемый энергетический допплер. При этом методе в цвете кодируется

    не средняя величина допплеровского сдвига, как при обычном допплеровском картировании, а интеграл амплитуд всех эхосигналов допплеровского спектра. Это дает возможность получать изображение кровеносного сосуда на значительно большем протяжении, визуализировать

    сосуды даже очень небольшого диаметра (ультразвуковая ангиография). На ангиограммах, полученных с помощью энергетического допплера, отражается не скорость движения эритроцитов, как при обычном цветовом картировании, а плотность эритроцитов в заданном объеме. Благодаря своим диагностическим возможностям ультразвуковая

    ангиография методом энергетического допплера в ряде случаев может

    заменить более инвазивную рентгеновскую ангиографию (рис. 11.43).

    Допплеровское картирование используют в клинике для изучения

    формы, контуров и просвета кровеносных сосудов. С помощью этого метода легко выявляют сужения и тромбоз сосудов, отдельные атеросклеротические бляшки в них, нарушения кровотока. Кроме того, введение в клиническую практику энергетического допплера позволило этому методу

    выйти за рамки чистой ангиологии и занять достойное место при исследовании различных паренхиматозных органов с диффузными и очаговыми

    поражениями, например у больных циррозом печени, диффузным или узловым зобом, пиелонефритом и нефросклерозом и др., чему способствует

    появление класса контрастных веществ для ультразвукового исследования.

    Еще один вид допплеровского картирования — тканевый допплер. Он основан на визуализации нативных тканевых гармоник. Они возникают как дополнительные частоты при распространении волнового сигнала в материальной среде, являются составной частью этого сигнала и кратны его основной (фундаментальной) частоте. Регистрируя только тканевые гармоники (без основного сигнала), удается получить изолированное изображение сердечной мышцы без изображения содержащейся в полостях сердца крови. Подобная визуализация сердечной мышцы, выполненная в фиксированные фазы сердечного цикла — систолу и диастолу, позволяет неинвазивным путем оценить сократительную функцию миокарда

    1. Контрастные средства в ультразвуковой диагностике. Область применения.

    Для того чтобы получить дифференцированное изображение тканей,примерно одинаково поглощающих излучение, применяют искусственное контрастирование. С этой целью в организм вводят вещества,которые поглощают рентгеновское излучение сильнее или, наоборот,слабее, чем мягкие ткани, и тем самым создают достаточный контрастс исследуемыми органами. Вещества, задерживающие больше излучения,чем мягкие ткани, называютреитгенопозитиеными. Они созданы на основе тяжелых элементов - бария или йода.

    В качестве же рентгеноиегативных контрастных веществ используют газы - закись азота, углекислый газ. Основные требования к рентгеноконтрастным веществам очевидны: создание высокой контрастности изображения, безвредность при введении в организм больного,быстрое выведение из организма.

    Существуют два принципиально различных способа контрастирования органов. Один из них заключается в прямом механическом введении контрастного вещества в полость органа — в пишевод, желудок, кишечник,слезные или слюнные протоки, желчные пути, полость матки, кровеносные сосуды или полости сердца.

    Второй способ контрастирования основан на способности некоторых органов поглощать из крови введенное в нее контрастное вещество, концентрировать и выделять его. Этот принцип — концентрации и выведения — используют при рентгенологическом исследовании мочевыделительной системы и желчных путей.

    В рентгенологической практике в настоящее время применяют следующие контрастные средства.

    1. Препараты сульфата бария (BaSO4). Водная взвесь сульфата бария

    основной препарат для исследования пищеварительного канала. Она нерастворима в воде и пищеварительных соках, безвредна. Применяют в виде суспензии в концентрации 1:1 или более высокой — до 5:1. Для придания препарату дополнительных свойств (замедление оседания твердых частиц бария, повышение прилипаемости к слизистой оболочке) в водную взвесь добавляют химически активные вещества (танин, цитрат натрия, сорбит и др.), для увеличения вязкости — желатин, пищевую целлюлозу. Существуют готовые официнальные препараты сульфата бария, отвечающие всем перечисленным требованиям.

    2. Йодсодержащие растворы органических соединений. Это большая группа препаратов, представляющих собой главным образом производные некоторых ароматических кислот — бензойной, адипиновой, фенилпропионовой и др. Препараты используют для контрастирования кровеносных сосудов и полостей сердца. К ним относятся, например, урографин, тразограф, триомбраст и др. Эти препараты выделяются мочевыводящей системой, поэтому могут быть использованы для исследования чашечно-лоханочного комплекса почек, мочеточников, мочевого пузыря.

    В последнее время появилось новое поколение йодсодержащих органических соединений — неионные (сначала мономеры — омнипак, ультравист, затем димеры — йодиксанол, йотролан). Их осмолярность значительно ниже, чем ионных, и приближается к осмолярности плазмы крови (300 моем).

    Вследствие этого они значительно менее токсичны, чем ионные мономеры. Ряд йодсодержащих препаратов улавливается из крови печенью и выводится с желчью, поэтому их применяют для контрастирования желчных путей. С целью контрастирования желчного пузыря применяют йодистые препараты, всасывающиеся в кишечнике (холевид).

    3. Иодированные масла. Эти препараты представляют собой эмульсию йодистых соединений в растительных маслах (персиковом, маковом). Они завоевали популярность как средства, используемые при исследовании бронхов, лимфатических сосудов, полости матки, свищевых ходов Особенно хороши ультражидкие йодированные масла (липоидол) которые характеризуются высокой контрастностью и мало раздражают ткани.

    Иодсодержащие препараты, особенно ионной группы, могут вызывать аллергические реакции и оказывать токсическое воздействие на организм

    Общие аллергические проявления наблюдаются со стороны кожи и слизистых оболочек (конъюнктивит, ринит, крапивница, отек слизистой оболочки гортани, бронхов, трахеи), сердечно-сосудистой системы (снижение кровяного давления, коллапс), центральной нервной системы (судороги, иногда параличи), почек (нарушение выделительной функции). Указанные реакции обычно преходящи, но могут достигать высокой степени выраженности и даже привести к смертельному исходу. В связи с этим перед введением в кровь йодсодержащих препаратов, особенно высокоосмолярных из ионной группы, необходимо провести биологическую пробу: осторожно вливают внутривенно 1 мл рентгеноконтрастного препарата и выжидают 2—3 мин, внимательно наблюдая за состоянием больного. Лишь в случае отсутствия аллергической реакции вводят основную дозу, которая при разных исследованиях варьирует от 20 до 100 мл.

    При малейших признаках реакции на введение пробной дозы исследование прекращают. С большой осторожностью прибегают к рентгеноконтрастным исследованиям у лиц с аллергическими заболеваниями:

    бронхиальной астмой, сенной лихорадкой, аллергическим назофарингитом и др. В рентгеновском кабинете всегда хранятся средства для предотвращения и устранения аллергических и токсических реакций. Еще раз

    подчеркнем, что благодаря введению в клиническую практику контрастных препаратов неионной группы значительно уменьшились количество и выраженность неблагоприятных реакций. Однако их высокая стоимость пока сдерживает повсеместный переход только на эти рентгеноконтрастные вещества.

    4. Газы (закись азота, углекислый газ, обычный воздух). Для введения в кровь можно применять только углекислый газ вследствие его высокой растворимости. При введении в полости тела и клетчаточные пространства также во избежание газовой эмболии используют закись азота. В пищеварительный канал допустимо вводить обычный воздух.

    В некоторых случаях рентгенологическое исследование проводят с двумя рентгеноконтрастными веществами — рентгенопозитивным и рентгенонегативным. Это так называемое двойное контрастирование. Чаще таким

    приемом пользуются в гастроэнтерологии, когда при исследовании пищеварительной трубки одновременно вводят сульфат бария и воздух.

    1. Получение и использование в диагностике ультразвукового излучения. Ультразвуковой диагностический аппарат, его основные части.



    1. Радионуклидная диагностика. Виды излучений, используемые в радионуклидной диагностике.

    Радионуклидный метод — это способ исследования функционального и морфологического состояния органов и систем с помощью радионуклидов и меченных ими индикаторов. Эти индикаторы — их называют радиофармацевтическими препаратами (РФП) — вводят в организм больного, а затем с помощью различных приборов определяют скорость и характер перемещения, фиксации и выведения их из органов и тканей.Кроме того, для радиометрии могут быть использованы кусочки тканей, кровь и выделения больного. Несмотря на введение ничтожно малых количеств индикатора (сотые и тысячные доли микрограмма) не оказывающих влияния на нормальное течение жизненных процессов, метод обладает исключительно высокой чувствительностью.

    Альфа-излучение – это поток атомов гелия, лишенных электронов. Альфа-частица имеет двойной положительный заряд (да протона и два нейтрона) и массу, которая равна 4 атомным единицам. Бета-излучение – это поток β-частиц, то есть электронов или позитронов. Каждая из частиц имеет один элементарный положительный или отрицательный электрический заряд. Гамма-излучение представляет собой электромагнитное излучение, испускаемое при радиоактивном распаде. Свойства γ-излучения определяются длиной волны (λ) и энергией кванта (Е). Энергия γ-квантов находится в пределах от десятков кэВ до МэВ, поэтому они характеризуются высокой проникающей способностью и выраженным биологическим действием.

    Современная радионуклидная диагностика основана на регистрации именно гамма-квантов, либо испускаемых непосредственно радиоактивными нуклидами при их распаде, либо образующихся при взаимодействии позитронов, испускаемых нуклидом, с электронами окружающих атомов.

    Регистрация γ-квантов производится несколькими способами – подсчетом количества ионизаций в ионизационных камерах, газоразрядных счетчиках и фиксацией пробега γ-квантов в некоторых веществах при попадании в них ионизирующих излучений (сцинтилляторах). Количество ионизаций, или сцинтилляций, свидетельствует о количестве радионуклидных распадов и, соответственно, о количестве радиоактивного нуклида

    13.Определение радиофармацевтического препарата (РФП). Требования к РФП. Способы подведения РФП к исследуемому объекту.

    Для радионуклидной диагностики используют радиофармацевтические препараты (РФП) и различные типы радиодиагностических приборов.

    РФП называется химическое соединение, содержащее в своей молекуле определенный радиоактивный нуклид, которое разрешено для введения человеку с диагностической или лечебной целью.

    В большинстве случаев в качестве индикаторов применяют физиологически активные или, как принято говорить, тропные к тем или иным органам (физиологическим системам) неорганические или органические соединения, белковые тела (в том числе, антигены, антитела, гормоны), в ряде случаев форменные элементы крови. В типичном варианте меченый индикатор вводится в кровеносное русло, и с этого момента начинается процесс собственно радионуклидного диагностического исследования.

    Все этапы транспорта индикатора могут быть представлены в систематизированном виде:

    1. Введение в кровеносное русло порции раствора индикатора.

    2. Механический его транспорт по венозному руслу и к сердцу.

    3. Постепенное размешивание препарата в камерах сердца и в кровеносном русле, а в ряде случаев и связывание с белками плазмы.

    4. Проникновение физиологически активного соединения сквозь гематотканевые барьеры.

    5. Прохождение из межуточного вещества в тропные для данного индикатора клетки.

    6. Концентрирование препарата, реакции его с нейтрализующими соединениями или белками-кондукторами и т.д., а в ряде случаев даже инкорпорирование в специализированных клетках или включение в синтезируемые в организме соединения (аминокислоты, белки и т.д.).

    7. Активный выход препарата из клеток в протоки экскретирующих систем или в межуточное вещество, затем вновь в кровяное русло или в лимфатические капилляры.

    8. Выведение препарата из организма через выделительные системы.

    Очевидно, что первый, второй, третий и восьмой этапы (первая группа) должны быть отнесены к этапам биомеханического транспорта препарата. Четвертый, пятый, шестой и седьмой этап (вторая группа) должны быть отнесены к этапам биохимического или метаболического характера. Разумеется, что последовательность эта условна.

    Кроме того, при энтеральном, ингаляционном или интралюмбальном введении появляется некоторое дополнительное количество этапов транспорта. Наоборот, количество этапов транспорта резко уменьшается, если в качестве индикатора используется физиологически инертное высокомолекулярное соединение или меченые элементы крови, длительное время не покидающие кровяное русло и циркулирующие в нем.

    Радионуклидная диагностика строится на применении таких меченых соединений, поведение которых в организме отражает особенности состояния его органов и функциональных систем. При этом, благодаря высочайшей чувствительности радиодиагностических приборов, РФП вводится в индикаторных количествах, не влияя на физиологические и морфологические показатели, а только отражает их состояние.

    Требованиями, предъявляемыми к РФП, являются:

    1. Малая токсичность.

    2. Испускание частиц, или фотонов, которые можно зарегистрировать.

    3. Диагностический смысл.

    Для регистрации радиоактивного нуклида, находящегося в организме человека, необходимо, чтобы его излучение обладало достаточным уровнем энергии гамма-квантов, а большая его часть проникала с минимальным рассеиванием в тканях. В этом плане целесообразны излучатели с энергией гамма-квантов от 50 до 150 кэВ (наиболее часто применяется 99mTc, образующий g-излучение с энергией 140 кэВ).

    Каждый РФП подвергается экспериментальным и клиническим испытаниям, РФП утверждаются Министерством Здравоохранения. Осуществляется контроль РФП за их химической, радиохимической и радионуклидной частотой, а также за стерильностью и апирогенностью
    1   2   3   4


    написать администратору сайта