1. Уровни организации жизни
Скачать 2 Mb.
|
Бесполое размножение Бесполое размножение — форма размножения, не связанная с обменом генетической информацией между особями — половым процессом. Бесполое размножение является древнейшим и самым простым способом размножения и широко распространено у одноклеточных организмов (бактерии, сине-зелёные водоросли, хлореллы, амёбы, инфузории). Этот способ имеет свои преимущества: в нём отсутствует необходимость поиска партнёра, а полезные наследственные изменения сохраняются практически навсегда. Однако при таком способе размножения изменчивость, необходимая для естественного отбора, достигается только за счёт случайных мутаций и потому осуществляется очень медленно. Тем не менее, следует отметить, что способность вида только к бесполому размножению не исключает способности к половому процессу, но когда эти события разнесены во времени. Наиболее распространённый способ размножения одноклеточных организмов — деление на две части, с образованием двух отдельных особей. Среди многоклеточных организмов способностью к бесполому размножению обладают практически все растения и грибы — исключением является, например, вельвичия. Бесполое размножение этих организмов происходит вегетативным способом или спорами. Среди животных способность к бесполому размножению чаще встречается у низших форм, но отсутствует у более продвинутых. Единственный способ бесполого размножения у животных — вегетативный. Широко распространено ошибочное мнение, что особи, образовавшиеся в результате бесполого размножения, всегда генетически идентичны родительскому организму (если не брать в расчёт мутации). Наиболее яркий контрпример — размножение спорами у растений, так как при спорообразовании происходит редукционное деление клеток, в результате чего в спорах содержится лишь половина генетической информации, имеющейся в клетках спорофита (см. Жизненный цикл растений). Половое размножение Половое размножение сопряжено с половым процессом (слиянием клеток), а также, в каноническом случае, с фактом существования двух взаимодополняющих половых категорий (организмов мужского пола и организмов женского пола). При половом размножении происходит образование гамет, или половых клеток. Эти клетки обладают гаплоидным (одинарным) набором хромосом. Животным свойствен двойной набор хромосом в обычных (соматических) клетках, поэтому гаметообразование у животных происходит в процессе мейоза. У многих водорослей и всех высших растений гаметы развиваются в гаметофите, уже обладающим одинарным набором хромосом, и получаются простым митотическим делением. По сходству-различию возникающих гамет между собой выделяют несколько типов гаметообразования: - изогамия — гаметы одинакового размера и строения, со жгутиками - анизогамия — гаметы различного размера, но сходного строения, со жгутиками - оогамия — гаметы различного размера и строения. Мелкие, имеющие жгутики мужские гаметы, называются сперматозоидами, а крупные, не имеющие жгутиков женские гаметы — яйцеклетками. При слиянии двух гамет (в случае оогамии обязательно слияние разнотипных гамет) образуется зигота, обладающая теперь диплоидным (двойным) набором хромосом. Из зиготы развивается дочерний организм, клетки которого содержат генетическую информацию от обеих родительских особей. Гермафродитизм Животное, имеющее и мужские, и женские гонады, называется гермафродитом. Гермафродитизм широко распространён среди низших животных и в меньшей степени у высших. Аналогичный признак у растений называется однодомностью (в отличие от двудомности) и сопряжен с общей эволюционной продвинутостью вида в меньшей степени, чем у животных. Партеногенез и апомиксис Партеногенез — это особый вид полового размножения, при котором новый организм развивается из неоплодотворенной яйцеклетки, таким образом обмена генетической информацией не происходит, как и при бесполом размножении. Аналогичный процесс у растений называется апомиксис. Чередование поколений Зонтиковидные спорофиты на слоевищном гаметофите маршанции из отдела Печёночные мхи У многих водорослей, у всех высших растений, у части простейших и кишечнополостных в жизненном цикле происходит чередование поколений, размножающихся соответственно половым и бесполым путём — метагенезис. У некоторых червей и насекомых наблюдается гетерогония — чередование разных половых поколения, например чередование раздельнополых поколений с гермафродитными, или с размножающимися партеногенетически. Чередование поколений у растений Гаметофит развивается из споры, имеет одинарный набор хромосом и имеет органы полового размножения — гаметангии. У разногаметных организмов мужские гаметангии, то есть производящие мужские гаметы, называются антеридиями, а женские — архегониями. Так как гаметофит, как и производимые им гаметы, имеет одинарный набор хромосом, то гаметы образуются простым митотическим делением. При слиянии гамет образуется зигота, из которой развивается спорофит. Спорофит имеет двойной набор хромосом и несет органы бесполого размножения — спорангии. У разноспоровых организмов из микроспор развиваются мужские гаметофиты, несущие исключительно антеридии, а из мегаспор — женские. Микроспоры развиваются в микроспорангиях, мегаспоры — в мегаспорангиях. При спорообразовании происходит мейотическая редукция генома, и в спорах восстанавливается одинарный набор хромосом, свойственный гаметофиту. Эволюция размножения Эволюция размножения шла, как правило, в направлении от бесполых форм к половым, от изогамии к анизогамии, от участия всех клеток в размножении к разделению клеток на соматические и половые, от наружного оплодотворения к внутреннему с внутриутробным развитием и заботой о потомстве. Темп размножения, численность потомства, частота смены поколений наряду с другими факторами определяют скорость приспособления вида к условиям среды. Например, высокие темпы размножения и частая смена поколений позволяют насекомым в короткий срок вырабатывать устойчивость к ядохимикатам. В эволюции позвоночных — от рыб до теплокровных — наблюдается тенденция к уменьшению численности потомства и увеличению его выживаемости 58. Половой диморфизм— анатомические различия между самцами и самками одного и того же биологического вида, не считая половых органов. Половой диморфизм может проявляться в различных физических признаках, например: - Размер. У млекопитающих и многих видов птиц самцы более крупные и тяжёлые, чем самки. У земноводных и членистоногих самки, как правило, крупнее самцов. - Волосяной покров. Борода у человека, грива у львов или бабуинов. - Окраска. Цвет оперения у птиц, особенно у утиных. - Кожа. Характерные наросты или дополнительные образования, такие как рога у оленевых, гребешок у петухов. - Зубы. Бивни у самцов индийского слона, более крупные клыки у самцов моржей и кабанов. Некоторые животные, прежде всего рыбы демонстрируют половой диморфизм только во время спаривания. Согласно одной из теорий, половой диморфизм выражен тем больше, чем различнее являются вклады обоих полов в уход за потомством. Также он является показателем уровня полигамии. Половой диморфизм — явление общебиологическое, широко распространенное среди раздельнополых форм животных и растений. В некоторых случаях половой диморфизм проявляется в развитии таких признаков, которые явно вредны для их обладателей и снижают их жизнеспособность. Таковы, например, украшения и яркая окраска самцов у многих птиц, длинные хвостовые перья самца райской птицы, птицы-лиры, мешающие полету. Громкие крики и пение, резкие запахи самцов или самок также могут привлечь внимание хищников и ставят их в опасное положение. Развитие таких признаков казалось необъяснимым с позиций естественного отбора. Для их объяснения в 1871 г. Дарвином была предложена теория полового отбора.[1] Она вызывала споры еще во времена Дарвина. Неоднократно высказывалось мнение, что это самое слабое место дарвиновского учения.[ 59. Мейоз (или редукционное деление клетки) — деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз не следует смешивать с гаметогенезом — образованием специализированных половых клеток, или гамет, из недифференцированных стволовых. С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса. В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма. Этот же механизм лежит в основе стерильности межвидовых гибридов. Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, или гамет. Определенные ограничения на конъюгацию хромосом накладывают и хромосомные мутации (масштабные делеции, дупликации, инверсии или транслокации). Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними. - Профаза I — профаза первого деления очень сложная и состоит из 5 стадий: - Фаза лептотены или лептонемы — конденсация ДНК с образованием хромосом в виде тонких нитей. - Зиготена или зигонема — конъюгация (соединение) гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами. - Пахитена или пахинема — кроссинговер (перекрест), обмен участками между гомологичными хромосомами; гомологичные хромосомы остаются соединенными между собой. - Диплотена или диплонема — происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой. - Диакинез — ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; гомологичные хромосомы остаются соединёнными между собой. - Метафаза I — бивалентные хромосомы выстраиваются вдоль экватора клетки. - Анафаза I — микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе. - Телофаза I — хромосомы деспирализуются и появляется ядерная оболочка. Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК. - Профаза II — происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления. - Метафаза II — унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку. - Анафаза II — униваленты делятся и хроматиды расходятся к полюсам. - Телофаза II — хромосомы деспирализуются и появляется ядерная оболочка. В результате из одной диплоидной клетки образуется четыре гаплоидных клетки. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и два так называемых редукционных тельца (абортивные дериваты первого и второго делений). Отличия Шаг 1: И в процессе митоза, и в процессе мейоза происходит образование митотического веретена, расхождение хромосом, деление клетки. Шаг 2: Процесс митоза включает в себя одно деление, и в результате образуются 2 дочерние клетки, а процесс мейоза – два деления, в результате образуются 4 дочерние клетки. Шаг 3: Количество ДНК в результате мейоза уменьшается в 4 раза, в результате митоза – в 2 раза. Шаг 4: Хромосомный набор клетки в результате митоза остаётся диплоидным, в результате мейоза из диплоидного становится гаплоидным. Шаг 5: Наконец, только в процессе мейоза происходит кроссинговер. 61. Воспроизведение — это способность организмов образовывать себе подобных. Воспроизведение является одним из важнейших свойств жизни и возможно благодаря общей способности организмов производить потомство. Однако не всегда непосредственные потомки подобны родительским особям. Например, из спор папоротника вырастает многочисленное потомство, представленное заростками, не похожими на материнское спороносное растение. На заростке, в свою очередь, возникает непохожее на него растение — спорофит. Такое явление получило название чередование поколений. 62. Половой процесс, или оплодотворение, или амфимиксис— процесс слияния гаплоидных половых клеток, или гамет, приводящий к образованию диплоидной клетки зиготы. Не следует смешивать это понятие с половым актом (встречей половых партнёров у многоклеточных животных). Половой процесс закономерно встречается в жизненном цикле всех организмов, у которых отмечен мейоз. Мейоз приводит к уменьшению числа хромосом в два раза (переход от диплоидного состояния к гаплоидному), половой процесс — к восстановлению числа хромосом (переход от гаплоидного состояния к диплоидному). Различают несколько форм полового процесса: - изогамия — гаметы не отличаются друг от друга по размерам, подвижны, жгутиковые или амебоидные; - анизогамия (Гетерогамия) — гаметы отличаются друг от друга по размерам, но оба типа гамет (макрогаметы и микрогаметы) подвижны и имеют жгутики; - оогамия — одна из гамет (яйцеклетка) значительно крупнее другой, неподвижна, деления мейоза, приводящие к её образованию, резко асимметричны (вместо четырёх клеток формируется одна яйцеклетка и два абортивных «полярных тельца»); другая (спермий, или сперматозоид) подвижна, обычно жгутиковая или амебоидная. Биологическое значение амфимиксиса непосредственно связан с биологической сущностью определенных сторон процесса оплодотворения. Дарвин, открывший «великий закон природы», говорил о прогрессивном значении появления полового процесса в истории органического мира, рассматривая при этом перекрёстное опыление как источник обогащения наследственности. Благодаря бипариентальному наследованию (материнское — от яйцеклетки и отцовское — от спермия) в результате амфимиксиса получаются более жизнеспособные организмы, обладающие более широким спектром изменчивости по сравнению с апомиктичными растениями. 63. Гаметогенез или предзародышевое развитие — процесс созревания половых клеток, или гамет. Поскольку в ходе гаметогенеза специализация яйцеклеток и спермиев происходит в разных направлениях, обычно выделяют овогенез и сперматогенез соответственно. Гаметогенез закономерно присутствует в жизненном цикле ряда простейших, водорослей, грибов, споровых и голосемянных растений, а также многоклеточных животных. В некоторых группах гаметы вторично редуцированы (сумчатые и базидиевые грибы, цветковые растения). Наиболее подробно процессы гаметогенеза изучены у многоклеточных животных. Гаметогенез (от гаметы и греч. genesis — происхождение), процесс развития и формирования половых клеток — гамет. Г. мужских гамет (сперматозоидов, спермиев) называют сперматогенезом, женских гамет (яйцеклеток) — оогенезом. У животных и растений Г. протекает различно, в зависимости от места мейоза в жизненном цикле этих организмов. У многоклеточных животных Г. происходит в специальных органах — половых железах, или гонадах (яичниках, семенниках, гермафродитных половых железах), и складывается из трёх основных этапов: 1) размножение первичных половых клеток — гаметогониев (сперматогониев и оогониев) путём ряда последовательных митозов, 2) рост и созревание этих клеток, называют теперь гаметоцитами (сперматоцитами и ооцитами), которые, как и гаметогонии, обладают полным (большей частью диплоидным) набором хромосом. В это время совершается основное событие Г. у животных — деление гаметоцитов путём мейоза, приводящее к редукции (уменьшению вдвое) числа хромосом в этих клетках и превращению их в гаплоидные клетки (см. Гаплоид) — сперматиды и оотиды; 3) формирование сперматозоидов (либо спермиев) и яйцеклеток; при этом яйцеклетки одеваются рядом зародышевых оболочек, а сперматозоиды приобретают жгутики, обеспечивающие их подвижность. У самок многих видов животных мейоз и формирование яйца завершаются после проникновения сперматозоида в цитоплазму ооцита, но до слияния ядер сперматозоида и яйцеклетки. У растений Г. отделен от мейоза и начинается в гаплоидных клетках — в спорах (у высших растений — микроспоры и мегаспоры). Из спор развивается половое поколение растения — гаплоидный гаметофит, в половых органах которого — гаметангиях (мужских — антеридиях, женских — архегониях) путём митозов происходит Г. Исключение составляют голосеменные и покрытосеменные растения, у которых сперматогенез идёт непосредственно в прорастающей микроспоре — пыльцевой клетке. У всех низших и высших споровых растений Г. в антеридиях — это многократное деление клеток, в результате которого образуется большое число мелких подвижных сперматозоидов. Г. в архегониях — формирование одной, двух или нескольких яйцеклеток. У голосеменных и покрытосеменных растений мужской Г. состоит из деления (путём митоза) ядра пыльцевой клетки на генеративное и вегетативное и дальнейшего деления (также путём митоза) генеративного ядра на два спермия. Это деление происходит в прорастающей пыльцевой трубке. Женский Г. у покрытосеменных растений — обособление путём митоза одной яйцеклетки внутри 8-ядерного зародышевого мешка. Основное различие Г. у животных и растений: у животных он совмещает в себе превращение клеток из диплоидных в гаплоидные и формирование гаплоидных гамет; у растений Г. сводится к формированию гамет из гаплоидных клеток. 64. Гаметы (от греч. γᾰμετή — жена, γᾰμέτης — муж) — репродуктивные клетки, имеющие гаплоидный (одинарный) набор хромосом и участвующие в гаметном, в частности, половом размножении. При слиянии двух гамет в половом процессе образуется зигота, развивающаяся в особь (или группу особей) с наследственными признаками обоих родительских организмов, продуцировавших гаметы. У некоторых видов возможно и развитие в организм одиночной гаметы (неоплодотворённой яйцеклетки) — партеногенез. |