Реферат Золотое сечение. 1 золотое сечение в математике
Скачать 117.38 Kb.
|
СОДЕРЖАНИЕ
ВВЕДЕНИЕ В дошедшей до нас античной литературе деление отрезка в крайнем и среднем отношении (ἄκρος καὶ μέσος λόγος) впервые встречается в «Началах» Евклида (ок. 300 лет до н. э.), где оно применяется для построения правильного пятиугольника. Неизвестно точно, кто и когда именно впервые ввел в обращение термин «золотое сечение». Несмотря на то, что некоторые авторитетные авторы связывают появление этого термина с Леонардо да Винчи в XV веке или относят появление этого термина к XVI веку, самое раннее употребление этого термина находится у Мартина Ома в 1835 году в примечании ко второму изданию его книги «Чистая элементарная математика», в котором Ом пишет, что это сечение часто называют золотым сечением (нем. goldener Schnitt). Из текста примечания Ома следует, что Ом не придумал этот термин сам, хотя некоторые авторы утверждают обратное. Тем не менее, исходя из того, что Ом не употребляет этот термин в первом издании своей книги, Роджер Герц-Фишлер делает вывод о том, что этот термин, возможно, появился в первой четверти XIX века. Марио Ливио считает, что он получил популярность в устной традиции около 1830 года. В любом случае, этот термин стал распространён в немецкой математической литературе после Ома. 1 ЗОЛОТОЕ СЕЧЕНИЕ В МАТЕМАТИКЕ В математике пропорцией называют равенство двух отношений: a/b = c/d. Отрезок прямой АВ можно разделить на две части следующими способами: - на две равные части – АВ/АС = АВ/ВС; - на две неравные части в любом отношении (такие части пропорции не образуют); таким образом, АВ/АС = АС/ВС. Последнее и есть золотое деление или деление отрезка в крайнем и среднем отношении. Золотое сечение - это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему. a/b = b/c или с/b = b/а. Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки (рисунок 1). Рисунок 1 – деления отрезка прямой в золотой пропорции с помощью циркуля и линейки. Из точки В восставляется перпендикуляр, равный половине АВ. Полученная точка С соединяется линией с точкой А. На полученной линии откладывается отрезок ВС, заканчивающийся точкой D. Отрезок AD переносится на прямую АВ. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции. Отрезки золотой пропорции выражаются бесконечной иррациональной дробью AE = 0,618…, если АВ принять за единицу, ВЕ = 0,382… Для практических целей часто используют приближенные значения 0,62 и 0,38. Если отрезок АВ принять за 100 частей, то большая часть отрезка равна 62, а меньшая - 38 частям. Свойства золотого сечения описываются уравнением: х2 - x - 1 = 0. . 2 ЗОЛОТЫЕ ФИГУРЫ На основе идеи золотого сечения существуют различные фигуры, содержащие эту пропорцию. Аналогично названию пропорции, их называют «золотые фигуры». Каждая такая фигура обязательно содержит пропорцию Фидия. 2.1 ЗОЛОТОЙ ПРЯМОУГОЛЬНИК Золотой прямоугольник – прямоугольник, у которого отношение смежных сторон дает пропорцию Фидия. А форму «золотого сечения» придавали книгам, столам и т.д. «Золотой прямоугольник» обладает интересным свойством: если от него отрезать квадрат, то останется вновь «золотой прямоугольник». Так можно продолжать до бесконечности. Если провести диагонали первого и второго прямоугольников, то точка О их пересечения принадлежит всем получаемым «золотым прямоугольникам» (рисунок 2). Рисунок 2 – Золотой прямоугольник. Произведения в искусстве значительно улучшены с использованием знания Золотого прямоугольника. Притягательность его ценности и употребления были особенно сильны в древнем Египте и Греции и во времена Ренессанса, т.е. во всех важных периодах цивилизации. Леонардо да Винчи придавал огромное значение Золотой пропорции. Он также находил ее приятной в своих соотношениях и говорил: Если предмет не имеет правильного облика, он не работает. Многие из его картин обладают правильным обликом, потому что он использовал Золотое сечение для того, чтобы усилить их привлекательность. 2.2 ЗОЛОТОЙ ТРЕУГОЛЬНИК Золотой треугольник представляет собой равнобедренный треугольник, у которого отношение длины боковой стороны к длине основания равняется числу Фидия (рисунок 3). Одним из его свойств является то что, длины биссектрис его углов при основании равны длине самого основания. Остальные свойства «вытекают» из свойств пентаграммы, которую мы рассмотрим позже. Рисунок 3 – Золотой треугольник. Стороны золотого треугольника образуют угол 36° при вершине, а основание, отложенное на боковую сторону, делит ее в пропорции золотого сечения. Его стороны образуют угол 36° при вершине, а основание, отложенное на боковую сторону, делит ее в пропорции золотого сечения. Одним из свойств золотого треугольника является то что, длины биссектрис его углов при основании равны длине самого основания. 2.3 ЗОЛОТОЙ КУБОИД «Золотой кубоид» - это прямоугольный параллелепипед с ребрами. «Золотой кубоид» – это прямоугольный параллелепипед с ребрами длиной Ф, 1 и j. Площадь его поверхности равна 4Ф, а диагональ – 2. Описанная вокруг него сфера имеет радиус «1». Значит, площадь ее поверхности равна 4p. Следовательно, отношение площади поверхности этой сферы к площади поверхности «золотого кубоида» равно p / Ф. 2.4 ПЕНТАГРАММА Пятиконечная звезда (рисунок 4), пожалуй, является одной из самых известных фигур. Она постоянно привлекала внимание людей своим совершенством. Пифагорейцы – ученики Пифагора выбрали ее в качестве символа своего союза именно эту звезду. Ее же считали амулетом здоровья. Сейчас звезда используются на многих флагах и гербах многих стран. Почему же она так привлекает, притягивает взгляд? Дело в том, что в этой звезде есть удивительное постоянство отношений составляющих ее отрезков. Рисунок 4 – Пятиконечная звезда. Для построения пентаграммы необходимо построить правильный пятиугольник. Способ его построения разработал немецкий живописец и график Альбрехт Дюрер (1471...1528). Пусть O – центр окружности, A – точка на окружности и Е – середина отрезка ОА. Перпендикуляр к радиусу ОА, восставленный в точке О, пересекается с окружностью в точке D. Пользуясь циркулем, отложим на диаметре отрезок CE = ED. Длина стороны вписанного в окружность правильного пятиугольника равна DC. Откладываем на окружности отрезки DC и получим пять точек для начертания правильного пятиугольника. Соединяем углы пятиугольника через один диагоналями и получаем пентаграмму. Все диагонали пятиугольника делят друг друга на отрезки, связанные между собой золотой пропорцией. Каждый конец пятиугольной звезды представляет собой золотой треугольник. Его стороны образуют угол 36° при вершине, а основание, отложенное на боковую сторону, делит ее в пропорции золотого сечения. Описание построения золотого треугольника написано выше. Линиями Ad1 и dd1 пользуются для построения «золотого» прямоугольника. Построения золотых пятиугольника и пентаграммы содержатся уже в «Началах» Евклида, написанных за 300 лет до нашей эры. 2.5 ЗОЛОТАЯ СПИРАЛЬ Расскажем ещё об одном замечательном применении золотого сечения в геометрии – о золотой спирали. Строго говоря, спираль не является фигурой, скорее кривой, но именно в этой главе уместно описать её. Форма спирально завитой раковины привлекла внимание Архимеда. Он изучал ее и вывел уравнение спирали. Спираль, вычерченная по этому уравнению, называется его именем. Увеличение ее шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике. Еще Гете подчеркивал тенденцию природы к спиральности. Он называл спираль «кривой жизни». Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Спираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Совместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке, семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Паук плетет паутину спиралеобразно. Спиралью закручивается ураган. Молекула ДНК закручена двойной спиралью. Существует математическая прогрессия, известная как ряд Фибоначчи, и она имеет особое отношение к числу фи и пирамидам в Гизе. Принципы этого ряда впервые изложил средневековый математик Леонардо Фибоначчи. Этот ряд использовали для описания роста растений. Вот эта последовательность: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 и так далее. Для того, чтобы получить каждое следующее число в этом ряду, надо сложить два предыдущих: 1+1=2, 1+2=3, 2+3=5, 3+5=8, 5+8=13 и так далее. У этой последовательности очень интересное соотношение с числом фи: если разделить каждый член этого ряда на предыдущий, полученные результаты будут стремиться к трансцендентному числу 1,6180339. 1/1=1, 2/1=2, 3/2=1.5, 5/3=1.66, 13/8=1.625, 21/13=1.615, 34/21=1.619, 55/34=1.617, 89/55=1.6181, чем дальше вы будете продолжать считать, тем ближе будете подходить к числу φ. Конечно, вы никогда не дойдете до него, потому что у него нет арифметического решения, но вы будете бесконечно приближаться к нему. Эту последовательность можно изобразить графически, в виде так называемой спирали Фибоначчи. Рисунок 5 – Золотая спираль. Эта спираль почти идентична логарифмической спирали φ, известной как спираль золотого сечения. Разница заключается в том, что спираль Фибоначчи – это интерпретация (при помощи целых чисел) арифметически невозможной спирали золотого сечения, у которой нет ни конца, ни начала. У спирали Фибоначчи есть определенное начало. 3 ПРИМЕНЕНИЕ ЗОЛОТОГО СЕЧЕНИЯ И ЕГО ФИГУР Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Kорбюзье нашел, что в рельефе из храма фараонa Cети I в Абидосе и в рельефе, изображающем фараона Pамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления. Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Kвадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников. Платон (427...347 гг. до н.э.) также знал о золотом делении. Его диалог "Тимей" посвящен математическим и эстетическим воззрениям школы Пифагора и, в частности, вопросам золотого деления. В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления. В дошедшей до нас античной литературе золотое деление впервые упоминается в "Началах" Евклида. Во 2-й книге "Начал" дается геометрическое построение золотого деления. После Евклида исследованием золотого деления занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др. В средневековой Европе с золотым делением познакомились по арабским переводам "Начал" Евклида. Переводчик Дж.Kампано из Наварры (III в.) сделал к переводу комментарии. Cекреты золотого деления ревностно оберегались, хранились в строгой тайне. Они были известны только посвященным. В эпоху Возрождения усиливается интерес к золотому делению среди ученых и художников в связи с его применением как в геометрии, так и в искусстве, особенно в архитектуре. Леонардо да Винчи, художник и ученый, видел, что у итальянских художников эмпирический опыт большой, а знаний мало. Он задумал и начал писать книгу по геометрии, но в это время появилась книга монаха Луки Пачоли, и Леонардо оставил свою затею. По мнению современников и историков науки, Лука Пачоли был настоящим светилом, величайшим математиком Италии в период между Фибоначчи и Галилеем. Лука Пачоли был учеником художника Пьеро делла Франчески, написавшего две книги, одна из которых называлась "О перспективе в живописи". Его считают творцом начертательной геометрии. Лука Пачоли прекрасно понимал значение науки для искусства. В 1496 г по приглашению герцога Моро он приезжает в Милан, где читает лекции по математике. В Милане при дворе Моро в то время работал и Леонардо да Винчи. В 1509 г. в Венеции была издана книга Луки Пачоли "Божественная пропорция" с блестяще выполненными иллюстрациями, ввиду чего полагают, что их сделал Леонардо да Винчи. Kнига была восторженным гимном золотой пропорции. Cреди многих достоинств золотой пропорции монах Лука Пачоли не преминул назвать и ее "божественную суть" как выражение божественного триединства бог сын, бог отец и бог дух святой (подразумевалось, что малый отрезок есть олицетворение бога сына, больший отрезок - бога отца, а весь отрезок - бога духа святого). Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению название золотое сечение. Так оно и держится до сих пор как самое популярное. В то же время на севере Европы, в Германии, над теми же проблемами трудился Альбрехт Дюрер. Он делает наброски введения к первому варианту трактата о пропорциях. Дюрер пишет. "Необходимо, чтобы тот, кто что-либо умеет, обучил этому других, которые в этом нуждаются. Это я и вознамерился сделать".Cудя по одному из писем Дюрера, он встречался с Лукой Пачоли во время пребывания в Италии. Альбрехт Дюрер подробно разрабатывает теорию пропорций человеческого тела. Важное место в своей системе соотношений Дюрер отводил золотому сечению. Pост человека делится в золотых пропорциях линией пояса, а также линией, проведенной через кончики средних пальцев опущенных рук, нижняя часть лица - ртом и т.д. Известен пропорциональный циркуль Дюрера. Великий астроном XVI в. Иоган Kеплер назвал золотое сечение одним из сокровищ геометрии. Он первый обращает внимание на значение золотой пропорции для ботаники (рост растений и их строение). Кеплер называл золотую пропорцию продолжающей саму себя «Устроена она так, – писал он, – что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности». В последующие века правило золотой пропорции превратилось в академический канон и, когда со временем в искусстве началась борьба с академической рутиной, в пылу борьбы "вместе с водой выплеснули и ребенка". Вновь "открыто" золотое сечение было в середине XIX в. В 1855 г. немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд "Эстетические исследования". Он абсолютизировал пропорцию золотого сечения, объявив ее универсальной для всех явлений природы и искусства. У Цейзинга были многочисленные последователи, но были и противники, которые объявили его учение о пропорциях «математической эстетикой». Цейзинг проделал колоссальную работу. Он измерил около двух тысяч человеческих тел и пришел к выводу, что золотое сечение выражает средний статистический закон. Деление тела точкой пупа - важнейший показатель золотого сечения. Пропорции мужского тела колеблются в пределах среднего отношения 13 : 8 = 1,625 и несколько ближе подходят к золотому сечению, чем пропорции женского тела, в отношении которого среднее значение пропорции выражается в соотношении 8 : 5 = 1,6. У новорожденного пропорция составляет отношение 1 : 1, к 13 годам она равна 1,6, а к 21 году равняется мужской. Пропорции золотого сечения проявляются и в отношении других частей тела - длина плеча, предплечья и кисти, кисти и пальцев и так далее (рисунок 6). Рисунок 6 – Пропорции мужского тела. Справедливость своей теории Цейзинг проверял на греческих статуях. Наиболее подробно он разработал пропорции Аполлона Бельведерского. Подверглись исследованию греческие вазы, архитектурные сооружения различных эпох, растения, животные, птичьи яйца, музыкальные тона, стихотворные размеры. Цейзинг дал определение золотому сечению, показал, как оно выражается в отрезках прямой и в цифрах. Когда цифры, выражающие длины отрезков, были получены, Цейзинг увидел, что они составляют ряд Фибоначчи, который можно продолжать до бесконечности в одну и в другую сторону. Следующая его книга имела название «Золотое деление как основной морфологический закон в природе и искусстве». В 1876 г. в России была издана небольшая книжка, почти брошюра, с изложением этого труда Цейзинга. Автор укрылся под инициалами Ю.Ф.В. В этом издании не упомянуто ни одно произведение живописи. ЗАКЛЮЧЕНИЕ В 13 веке от Рождества Христова известный итальянский математик известный по имени Фиббоначи, наблюдая за различными явлениями живой природы, открыл золотую пропорцию – бесконечную последовательность чисел, где каждое последующее число является сумой двух предыдущих; разделив каждое предыдущее на последующее мы всегда будем получать приблизительно 0,618 (например 987/1597=0,618034). Леонардо Да Винчи, создавая свои картины, использовал особый способ структурного совершенства: он называл его Золотым Сечением, при котором отношение всего отрезка к большей части равно отношению большей части к меньшей и приблизительно равно 0,618. До этого в 6 веке нашей эры греческий философ и математик Пифагор находит это соотношение в геометрии. А в 3 веке нашей эры упоминание о нем можно найти и у древних египтян, которые называли его божественной сутью. Возможно, им было дано знание о существовании особых законов гармонии, которые являются основой всего совершенного в этом мире. Теперь о воде. В обычной воде угол между водородными связями равен 104, а у талой 108 и соотношение длин водородных связей 0,618. Некоторые ученые предполагают, что замерзая и оттаивая, вода неизменно сохраняет одну базовую программу жизни, именно по этой программе и создавалось все совершенное. Список использованных источников Наука и техника http://n-t.ru/tp/iz/zs.htm (дата обращения 27.06.2020) Википедия. Свободная энциклопедия https://ru.wikipedia.org/wiki/Золотое_сечение (дата обращения 27.06.2020). Виленкин Н.Я. За страницами учебника математики – Москва, изд-во «Просвещение», 2007 год. fictionbook.ru http://fictionbook.ru/author/litagent_audiokniga/yenciklopediya_simvolov/read_online.html?page=1 (дата обращения 27.06.2020) Энциклопедия замечательных людей и идей http://www.abc-people.com/data/leonardov/zolot_sech-txt.htm (дата обращения 27.06.2020) |