Главная страница
Навигация по странице:

  • Процесс приготовления

  • . Пропитка парафином

  • Гистология вопросы теоритические. теория экзам билетов (1) (1). 2. биологические мембраны клеток 4 клеточная оболочка (цитолемма) 4


    Скачать 2.97 Mb.
    Название2. биологические мембраны клеток 4 клеточная оболочка (цитолемма) 4
    АнкорГистология вопросы теоритические
    Дата12.04.2023
    Размер2.97 Mb.
    Формат файлаdoc
    Имя файлатеория экзам билетов (1) (1).doc
    ТипДокументы
    #1057657
    страница18 из 18
    1   ...   10   11   12   13   14   15   16   17   18

    36.ЗАРОДЫШЕВЫЕ ОБОЛОЧКИ И ПРОВИЗОРНЫЕ ОРГАНЫ У ЧЕЛОВЕКА


    3.1.Трофобласт, его развитие и строение 3.2.Хорион, его строение и функции 3.3.Амнион, его развитие, строение и функции 3.4.Желточный мешок, его развитие, строение и функции 3.5.Аллантоис, его строение и функции

    т рофобласт – тонкая однослойная стенка из мелких светлых клеток; Трофобласт образует сплошной клеточный покров всего зародышевого комплекса, в дальнейшем формирует эпителиальный покров ворсинок хориона, а впоследствии — ворсинок плаценты. Активация трофобласта сопровождается его выраженными морфологическими изменениями. а) Он становится двуслойным, делясь на - цитотрофобласт (нижний слой, сохраняющий клеточное строение) - и симпластотрофобласт

    Кроме того, он образует выросты, которые позже приобретают вид ветвящихся ворсин и (вместе с подрастающей мезенхимой) к рубежу 2-й и 3-й недель развития превращают трофобласт в хорион.



    хорион-подразделяется на 2 отдела.

    Ветвистый хорион (4) - часть хориона,

     прилегающая к decidua basalis (1) и
     образующая вместе с ним плаценту.
    б) Здесь ворсинки хориона

     становятся разветвлёнными и
     обильно прорастают кровеносными сосудами, идущими от тела зародыша.

    Гладкий хорион (5) - остальная часть хориона, прилежащая к decidua capsularis (2).

    б) В этой области ворсинки исчезают и

     гладкий хорион становится средней оболочкой плода.




    Амнион внутренняя оболочка плода. Амнион - образуется из внезародышевой эктодермы и мезенхимы (у птиц еще и париетальный листок спланхнотомов). Функция - создает благоприятную защитную водную среду вокруг зародыша.

    Желточный мешок - образуется из внезародышевой энтодермы и мезенхимы (у птиц еще и висцеральный листок спланхнотомов). Функции: обеспечивает питание зародыша; там образуются первые кровеносные сосуды, первые клетки крови и половые клетки - гонобласты.

    Аллантоис ("мочевой мешок") - это слепое выпячивание энтодермы в заднем отделе первичной кишки; в нем накопливается шлаки обмена плода, т.е. выделительная функция; у млекопитающих является проводником пупочных сосудов плода и участвует при формировании эпителия мочевого пузыря.





    37.ЭМБРИОНАЛЬНАЯ ИНДУКЦИЯ


    3.1.Определение понятия эмбриональной индукции 3.2.Значение эмбриональной индукции 3.3.Индуцирующие факторы, механизмы их действия 3.4.Примеры эмбриональной индукции в раннем эмбриогенезе 3.5.Примеры эмбриональной индукции в развитии органов

    Эмбриональная индукция – это направление гистогенетического процесса в нужное русло путем выделения одним зачатком веществ – индукторов, действующих на другой зачаток ткани. В качестве индукторов могут быть различные факторы – питательные вещества, кислород, уровень рН, концентрация солей, гормоны, медиаторы.

    При этом клеточный материал, на который воздействует индуктор, не индифферентен, то есть имеет место не односторонняя индукция, а взаимодействие частей развивающегося зародыш.

    индукция – это влияние микроокружения, которое приводит к экспрессии генов, компетентных реагировать на данные факторы

    При нормальном развитии направление дифференцировки строго определено окружением. Если на ранних стадиях развития клетки слабо детерминированы и мало дифференцированы – в ходе развития происходят изменения в самих клетках и формируется биосистема с установившимися внутренними связями, саморегуляцией, относительной автономностью. Чем выше дифференцировка системы, тем меньше вероятность передетерминации. При трансплантации участка зародыша на ранних стадиях развития его клетки легко адаптируются к новым условиям, передетерминируются и развиваются уже в новом окружении. В эксперименте таким образом можно передетерминировать закладку органа. Но чем выше дифференцировка ткани, тем меньше вероятность передетерминации.

    Пример:

    Если пересадить спинную губу ранней гаструлы, то индуцируется развитие структур переднего мозга (головной индуктор), если же пересадить спинную губу поздней гаструлы, то развиваются спинной мозг и мезодермальные ткани.  Было показано также, что наиболее сильное нейрализующее влияние оказывает фракция нуклеопротеинов, а мезодермализующим индуктором оказался белок.

    Различают гетерономную и гомономную виды индукции. К гетерономной

    относят случаи, подобные описанному, при которых один кусочек зародыша индуцирует иной орган (хордомезодерма индуцирует появление нервной трубки и всего зародыша в целом). Гомономная индукция заключается в том, что индуктор побуждает окружающий материал к развитию в том же направлении, что и он сам. Например, область нефротома, пересаженная другому зародышу, способствует развитию окружающего материала в сторону формирования головной почки, а прибавление в культуру фибробластов сердца маленького кусочка хряща влечет за собой процесс образования хряща.

    Чтобы воспринять действие индуктора, компетентная ткань должна обладать хотя бы минимальной организацией. Одиночные клетки не воспринимают действие индуктора, а чем больше клеток в реагирующей ткани, тем активнее ее реакция. Для оказания индуцирующего действия иногда достаточно лишь одной клетки индуктора.

    Индукционные взаимодействия могут проявляться в культуре ткани in vitro, но по-настоящему полноценными они бывают только в структуре целостного организма.

    Явления индукции многочисленны и разнообразны. Помимо первичной индукции со стороны спинной губы бластопора описаны индукционные влияния на более поздних, нежели гаструляция, этапах развития. Все они являются вторичными и третичнымипредставляя собой каскадные взаимодействия, типичные для дифференцировки, потому что индукция многих структур зависит от предшествующих индукционных событий. Примером вторичной индукции может служить действие глазного бокала (выпячивание переднего мозга) на прилежащий покровный эпителий, под влиянием чего эпителий впячивается, а затем отшнуровывается хрусталиковый пузырек—зачаток глазного хрусталика Расположенный над хрусталиком покровный эпителий тоже испытывает сложные изменения, теряет пигмент и становится роговичным эпителием. Это пример третичной индукции. Таким образом получается, что глазной бокал возникает



    только после развития передней части головного мозга, хрусталик — после формирования бокала, а роговица — после образования хрусталика.

    38.МЕТОДЫ ИССЛЕДОВАНИЙ В ГИСТОЛОГИИ И ЦИТОЛОГИИ


    3.1.Основные принципы и этапы подготовки материала для гистологического и цитологического исследований 3.2.Основные методы общегистологического исследования. 3.3.Специальные методы исследования 3.4.Понятие и принципы гистохимических исследований 3.5.Основные методы качественной и количественного и количественного изучения структур

    Гистологический анализ включает в себя следующие главные этапы: выбор объекта исследования, подготовку его для изучения под микроскопом (приготовление гистологических препаратов), микроскопирование препаратов (одним или несколькими методами), качественный и количественный анализ микроскопической картины. Объектами исследования могут служить живые или мертвые (фиксированные) клетки, ткани органов или их изображения на экране дисплея.

    Основой методов служит гистологический препарат.
    Гистологический препарат (постоянный) является основным объектом исследования для морфолога и представляет собой срез ткани (от 5 до 60 мкм), заключенный между предметным стеклом (толщиной от 2 до 3 мм) и покровным (от 0,18 до 0,2 мм). Материалом для исследования служат кусочки органов, мазки крови или слизи, отпечатки органа или оболочки мозга, стенка мочевого пузыря, брыжейка и т.п. (тотальные препараты).
    Процесс приготовления гистологического препарата состоит из следующих этапов: взятие и фиксирование материала; его уплотнение; приготовление срезов на микротоме; их окрашивание (контрастирование); заключение срезов в бальзам или синтетические смолы.

    Взятый из органа образец ткани погружают в фиксатор — простой 70 — 96 %-й спирт, 10 — 12 %-й формалин, растворы уксусной кислоты, бихромата калия, осмиевой кислоты или сложный (смеси простых фиксирующих жидкостей или солей тяжелых металлов в определенных пропорциях, обеспечивающие рН и молярность, близкие к таковым в организме). Действие фиксаторов проявляется в том, что в тканях и органах, в результате сложных биофизических процессов, происходит необратимая коагуляция белков, жизнедеятельность прекращается, то есть клеточные структуры становятся мертвыми. Они теперь находятся в том функциональном состоянии, в котором их застигла смерть, то есть зафиксированными. Фиксация приводит к некоторому уплотнению и уменьшению объема образца.

    Уплотнение образцов ткани. Цель этого этапа — достичь высокой плотности и пластичности материала для того, чтобы приготовить из него тонкие срезы. Применяют уплотняющие среды — парафин, целлоидин, желатин, органические смолы или замораживание. Пропитка парафином продолжается от 1 до 4 ч, целлоидином — до 1 — 3 нед. Кусочек ткани предварительно обезвоживают (проводят через спирты возрастающей концентрации); затем спирт вытесняют промежуточной средой, способной смешиваться со спиртом и одновременно растворять уплотняющее вещество. При использовании парафина промежуточной средой служат циклические углеводороды (бензол, ксилол) или хлороформ. Для того, чтобы избежать перепада температур (парафин плавится при 60 °C) после вытеснения спирта ксилолом, образец выдерживают от 2 до 3 ч в смеси парафина с ксилолом при температуре 38 °C. Из уплотненного парафином образца вырезают блоки, из которых и готовят тонкие срезы, способные пропускать свет (что является необходимым условием для световой микроскопии). Наиболее тонкие срезы (толщиной от 5 до 7 мкм) удается изготовить из материала, залитого в парафин. Из образцов, уплотненных целлоидином, готовят срезы толщиной от 10 до 30 мкм. Срезы получают на санных или ротационных микротомах; для экспресс-диагностики (срезы толщиной от 40 до 60 мкм) — на замораживающем микротоме.
    Окрашивание срезов. Срезы окрашивают, чтобы увеличить контрастность различных гистологических структур в препаратах, предназначенных для исследования в световом микроскопе. Разработаны разнообразные методы окраски. В процессе окрашивания происходят сложные химические и физические процессы, поэтому при выборе метода учитывают избирательное сродство структур клетки к определенным красителям с разными физико-химическими свойствами.
    Все красители подразделяют на кислые, основные и специальные. Структуры срезов, хорошо окрашивающиеся кислыми красителями, называют оксифильными, основными красителями — базофильными окрашивающиеся как теми, так и другими — нейтрофильными. Специальные красители селективно выявляют конкретные структуры, обладающие сродством к ним. Наиболее широко распространен комбинированный метод окраски тканей — гематоксилином и эозином. Гематоксилин (основной краситель) окрашивает ядра клеток в синефиолетовый цвет, а эозин (кислый) — элементы цитоплазмы в розово-желтый. Окрашенные препараты обезвоживают в спиртах восходящей концентрации (50 %, 70 %, 96 %, 100 %), просветляют в ксилоле или некоторых маслах и затем каждый гистологический срез заключают между предметным и покровным стеклами в канадский бальзам или синтетические смолы. Готовый (постоянный) гистологический препарат можно хранить годами и использовать для микроскопирования.

    I. Основной метод - микроскопирование.

    А. Световая микроскопия - исследования обычным световым микроскопом.

    Б. Специальные методы микроскопирования: - фазово-контрастный микроскоп (для изучения живых неокрашенных объектов) - темнопольный микроскоп (для изучения живых неокрашенных объектов) - люминесцентный микроскоп (для изучения живых неокрашенных объектов) - ультрафиолетовый микроскоп (повышает разрешающую способность микроскопа) - поляризационный микроскоп (для исследования объектов с упорядоченным расположением молекул - скелетная мускулатура, коллагеновые волокна и т.д.) интерференционная микроскопия (для определения сухого остатка в клетках, определение толщины объектов)

    В. Электронная микроскопия: - трансмиссионная (изучение объектов на просвет) - сканирующая (изучение поверхности объектов)

    II. Специальные (немикроскопические) методы:

    1.Цито- или гистохимия - суть заключается в использовании строго специфических химических реакций со светлым конечным продуктом в клетках и тканях для определения количества различных веществ (белков, ферментов, жиров, углеводов и т. д.). Можно применить на уровне светового или электронного микроскопа.

    2. Цитофотометрия - метод применяется в комплексе с 1 и дает возможность количественно оценить выявленные цитогистохимическим методом белки, ферменты и т.д.

    3. Авторадиография - вводят в организм вещества, содержащие радиоактивные изотопы химических элементов. Эти вещества включаются в обменные процессы в клетках. Локализацию, дальнейшие перемещения этих веществ в органах определяются на гистопрепаратах по излучению, которое улавливается фотоэмульсией, нанесенной на препарат.

    4. Рентгеноструктурный анализ - позволяет определить количество химических элементов в клетках, изучить молекулярную структуру биологических микрообъектов.

    5. Морфометрия - измерение размеров биол. структур на клеточном и субклеточном уровне.

    6. Микроургия - проведение очень тонких операций микроманипулятором под микроскопом (пересадка ядер, введение в клетки различных веществ, измерение биопотенциалов и т.д.)

    6. Метод культивирования клеток и тканей - в питательных средах или в диффузионных камерах, имплантированных в различные ткани организма.

    7. Ультрацентрифугирование - фракционирование клеток или субклеточных структур путем центрифугирования в растворах различной плотности.

    8. Экспериментальный метод.

    9. Метод трансплантации тканей и органов.
    1   ...   10   11   12   13   14   15   16   17   18


    написать администратору сайта