Главная страница
Навигация по странице:

  • Введение .

  • Ингибиторы бета-лактомаз: определение, классификация, механизм действия. 1.1. Понятие о ингибиторах бета-лактомаз.

  • Механизм действия бета-лактамаз .

  • Характеристика свойств ингибиторов бета-лактомаз .

  • 2. Исследование содержания клавулановой кислоты в препарате Амоксиклав


    Скачать 94.75 Kb.
    Название2. Исследование содержания клавулановой кислоты в препарате Амоксиклав
    Дата11.09.2018
    Размер94.75 Kb.
    Формат файлаdocx
    Имя файла277.docx
    ТипИсследование
    #50321
    страница1 из 2
      1   2

    Содержание.

    Введение ………………………………………………………………….3

    Глава 1.

    1. Ингибиторы бета-лактомаз: определение, классификация, механизм действия .

    1.1. Понятие о ингибиторах бета-лактомаз …………………………5

    1.2. Механизм действия бета-лактамаз ……………………………..6

    1.3. Характеристика свойств ингибиторов бета-лактомаз ………..9

    1.4. Характеристика Сульбактама …………………………………12

    Глава 2.

    2. Исследование содержания клавулановой кислоты в препарате Амоксиклав .

    Заключение …………………………………………………….27

    Список использованной литературы ……………………..…28

    Введение.

    Комбинация была изобретена около 1977/78 гг. британскими учёными, работающими в Beecham (теперь часть GlaxoSmithKline). Патент был выдан в 1984 году. Аугментин является оригинальным названием и используется его изобретателе. Действует бактерицидно, угнетает синтез бактериальной стенки. Амоксициллин эффективен по отношению к бактериям, имеющим к нему чувствительность. За счет включения в препарат ингибитора бета-лактамаз (клавулановой кислоты) средство может назначаться и при инфекциях, резистентных к действию амоксициллина. Амоксициллин в сочетании с клавулановой кислотой aктивен в отношении аэробных грамположительных бактерий (включая штаммы, продуцирующие бета-лактамазы): Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pyogenes, Streptococcus anthracis, Streptococcus pneumoniae, Streptococcus viridans, Enterococcus faecalis, Corynebacterium spp., Listeria monocytogenes; анаэробных грамположительных бактерий: Clostridium spp., Peptococcus spp., Peptostreptococcus spp.; аэробных грамотрицательных бактерий (включая штаммы, продуцирующие бета-лактамазы): Escherichia coli, Proteus mirabilis, Proteus vulgaris, Klebsiella spp., Salmonella spp., Shigella spp., Bordetella pertussis, Yersinia enterocolitica, Gardnerella vaginalis, Neisseria meningitidis, Neisseria gonorrhoeae, Moraxella catarrhalis, Haemophilus influenzae, Haemophilus ducreyi, Yersinia multocida (ранее Pasteurella), Campylobacter jejuni; анаэробных грамотрицательных бактерий (включая штаммы, продуцирующие бета-лактамазы): Bacteroides spp., включая Bacteroides fragilis. Клавулановая кислота подавляет II, III, IV и V типы бета-лактамаз, неактивна в отношении бета-лактамаз I типа, продуцируемых Enterobacter spp., Pseudomonas aeruginosa, Serratia spp., Acinetobacter spp..

    Ингибиторы бета-лактомаз: определение, классификация, механизм действия.

    1.1. Понятие о ингибиторах бета-лактомаз.

    В настоящее время бета-лактамные антибиотики являются наиболее часто применяемыми препаратами для лечения бактериальных инфекций, однако их эффективность может снижаться вследствие возникновения к ним устойчивости, наиболее частым механизмом развития которой является продукция бета-лактамаз. Для преодоления данного специфического механизма резистентности были синтезированы ингибиторы бета-лактамаз, способные подавлять активность широкого ряда бета-лактмаз, вырабатываемых грамположительными, грамотрицательными и анаэробными патогенами.

    Семейство бета-лактамных антибиотиков включает четыре основные группы антимикробных препаратов: пенициллины, цефалоспорины, монобактамы и карбапенемы.Бета-лактамные антибиотики действуют на клетку бактерии двумя основными путями. Во-первых, они встраиваются в стенку бактериальной клетки и подавляют активность фермента транспептидазы, участвующего в завершающем этапе построения стенки бактерии. Во-вторых, они связываются с пенициллинсвязывающими белками (ПСБ), которые в норме подавляют гидролазы бактериальной клетки и таким образом высвобождают эти гидролазы, что приводит к лизису бактериальной стенки. Для борьбы с этими основными механизмами действия бета-лактамов бактерии приобрели способность вырабатывать специальные ферменты бета-лактамазы, способные гидролизировать бета-лактамное кольцо, а также изменять тип строения ПСБ [1].

    Синтез бета-лактамаз кодируется или хромосомами (конститутивный тип), например Pseudomonas aeruginosa, или плазмидами (индуцибельный тип), например Aeromonas hydrophila и Staphylococcus aureus. Плазмиды могут передаваться от одной бактерии к другой, способствуя быстрому распространению резистентности.

    Механизм действия бета-лактамаз .

    Это группа препаратов с бактерицидным эффектом и достаточно широким списком показаний к применению. К бета-лактамным антибиотикам относятся пенициллины, цефалоспорины, карбапенемы, монобактамы. Все они характеризуются высокой эффективностью и сравнительно небольшой токсичностью, что делает их препаратами, наиболее часто назначаемыми для лечения многих заболеваний.



    Из антистафилококковых пенициллинов наибольшее значение имеет такой бета-лактамный антибиотик, как "Оксациллин". Это препарат для узкого применения, так как предназначен он преимущественно для борьбы с золотистым стафилококком. Именно против этого возбудителя (в том числе и пенициллинрезистентных штаммов) "Оксациллин" наиболее эффективен. Побочное действие сходно с таковым у других представителей этой группы лекарств. Пенициллины расширенного спектра действия помимо грамположительной, грамотрицательной флоры и анаэробов активны также против возбудителей кишечных инфекций. Побочные эффекты не отличаются от вышеперечисленных, хотя для этих препаратов характерна несколько более высокая вероятность расстройств со стороны пищеварительной системы. Бета-лактамный антибиотик "Азлоциллин" (представитель четвертой группы пенициллинов) предназначен для борьбы с синегнойной палочкой. Однако в настоящее время у данного возбудителя проявилась резистентность к препаратам этого ряда, что делает их использование не столь эффективным.

    Бета-лактамными антибиотиками являются и цефалоспорины. Эти препараты, подобно пенициллинам, отличаются широтой спектра действия и незначительностью побочных эффектов. Существует четыре группы (поколения) цефалоспоринов: Наиболее яркие представители первого поколения – "Цефазолин" и "Цефалексин". Они предназначены преимущественно для борьбы со стафилококками, стрептококками, менингококками и гонококками, а также некоторыми грамотрицательными микроорганизмами. Второе поколение – это бета-лактамный антибиотик "Цефуроксим". Его зона ответственности включает в основном грамотрицательную микрофлору. "Цефотаксим", "Цефтазидим" – представители третьей группы данной классификации. Они очень эффективны против энтеробактерий, а также способны уничтожать нозокомиальную флору (госпитальные штаммы микроорганизмов). Основной препарат четвертого поколения – "Цефепим". Он обладает всеми достоинствами вышеперечисленных лекарственных средств, кроме того, чрезвычайно устойчив к действию бета-лактамаз бактерий и обладает активностью против синегнойной палочки. Цефалоспоринам и бета-лактамным антибиотикам в целом характерен ярко выраженный бактерицидный эффект. Речь идет о микроорганизмах, существующих в медицинских учреждениях. Источниками их появления служат пациенты и медперсонал. Особенно опасны скрытые, вялотекущие формы заболеваний. Больница – идеальное место, где собираются переносчики всех возможных видов инфекционных болезней. А нарушения санитарных правил и норм являются благодатной почвой для того, чтобы данная флора нашла себе нишу для существования, где бы она могла жить, размножаться и приобретать устойчивость к лекарственным препаратам. Высокая резистентность госпитальных штаммов обусловлена прежде всего тем, что, выбрав своей средой обитания больничное учреждение, бактерии получают возможность контактировать с различными лекарственными средствами. Естественно, что воздействие препаратов на микроорганизмы происходит случайно, не имея цели уничтожить, и в малых дозах, а это способствует тому, что представители госпитальной микрофлоры могут выработать защиту против губительных для них механизмов, научиться противостоять им. Так и появляются штаммы, бороться с которыми очень трудно, а порой кажется, что и невозможно. Антибиотики бета-лактамного ряда в той или иной мере пытаются решить эту сложную задачу. Среди них есть представители, способные довольно успешно бороться даже с самыми нечувствительными к лекарствам бактериями. Это препараты резерва. Применение их ограничено, а назначаются они только в том случае, когда это действительно необходимо. Если же эти антибиотики будут использоваться необоснованно часто, то, скорее всего, это закончится падением их эффективности, ведь тогда бактерии получат возможность взаимодействовать с небольшими дозами данных препаратов, изучать их и вырабатывать способы защиты.

    Характеристика свойств ингибиторов бета-лактомаз .

    Однако для взаимодействия с ПСБ антибиотику необходимо проникнуть из внешней среды через наружные структуры микроорганизма. У грамположительных микроорганизмов капсула и пептидогликан не являются существенной преградой для диффузии БЛА. Практически непреодолимой преградой для диффузии БЛА является липополисахаридный слой грамотрицательных бактерий. Единственным путем для диффузии БЛА служат пориновые каналы внешней мембраны, которые представляют собой воронкообразные структуры белковой природы, и являются основным путем транспорта питательных веществ внутрь бактериальной клетки.

    Следующим фактором, ограничивающим доступ БЛА к мишени действия, являются ферменты бета-лактамазы, гидролизующие антибиотики. Бета-лактамазы, вероятно, впервые появились у микроорганизмов одновременно со способностью к продукции БЛА как факторы нейтрализующие действие синтезируемых антибиотических веществ. В результате межвидового генного переноса бета-лактамазы получили широкое распространение среди различных микроорганизмов, в том числе и патогенных. У грамотрицательных микроорганизмов бета-лактамазы локализуются в периплазматическом пространстве, у грамположительных они свободно диффундируют в окружающую среду.

    К практически важным свойствам бета-лактамаз относятся:

    Субстратный профиль (способность к преимущественному гидролизу тех или иных БЛА, например пенициллинов или цефалоспоринов или тех и других в равной степени).

    Локализация кодирующих генов (плазмидная или хромосомная). Эта характеристика определяет эпидемиологию резистентности. При плазмидной локализации генов происходит быстрое внутри- и межвидовое распространение резистентности, при хромосомной наблюдают распространение резистентного клона.

    Тип экспрессии (конститутивный или индуцибельный). При конститутивном типе микроорганизмы синтезируют бета-лактамазы с постоянной скоростью, при индуцибельном количество синтезируемого фермента резко возрастает после контакта с антибиотиком (индукции).

    Чувствительность к ингибиторам. К ингибиторам относятся вещества бета-лактамной природы, обладающие минимальной антибактериальной активностью, но способные необратимо связываться с бета-лактамазами и, таким образом, ингибировать их активность (суицидное ингибирование). В результате при одновременном применении БЛА и ингибиторов бета-лактамаз последние защищают антибиотики от гидролиза. Лекарственные формы, в которых соединены антибиотики и ингибиторы бета-лактамаз, получили название комбинированных, или защищенных, бета-лактамов. В клиническую практику внедрены три ингибитора: клавулановая кислота, сульбактам и тазобактам. К сожалению, далеко не все известные бета-лактамазы чувствительны к их действию.

    Среди многообразия бета-лактамаз необходимо выделить несколько групп, имеющих наибольшее практическое значение . Более подробную информацию о современной классификации бета-лактамаз и их клиническом значении можно найти в обзорах [1 - 3].Таким образом, индивидуальные свойства отдельных БЛА определяются их аффинностью к ПСБ, способностью проникать через внешние структуры микроорганизмов и устойчивостью к гидролизу бета-лактамазами.

    Поскольку пептидогликан (мишень действия БЛА) является обязательным компонентом микробной клетки, все микроорганизмы в той или иной степени чувствительны к антибиотикам этого класса. Однако на практике реальная активность БЛА ограничивается их концентрациями в крови или очаге инфекции. Если ПСБ не угнетаются при концентрациях антибиотиков, реально достижимых в организме человека, то говорят о природной устойчивости микроорганизма. Однако истинной природной резистентностью к БЛА обладают только микоплазмы, так как у них отсутствует пептидогликан - мишень дейтсвия антибиотиков.

    Кроме уровня природной чувствительности (или резистентности), клиническую эффективность БЛА определяет наличие у микроорганизмов приобретенной устойчивости. Приобретенная резистентность формируется при изменении одного из параметров, определяющих уровень природной чувствительности микроорганизма. Ее механизмами могут быть:

    I. Снижение аффинности ПСБ к антибиотикам.

    II. Снижение проницаемости внешних структур микроорганизма.

    III. Появление новых бета-лактамаз или изменение характера экспрессии имеющихся.

    Перечисленные эффекты являются результатом различных генетических событий: мутаций в существующих генах или приобретением новых.

    Как уже было отмечено, БЛА обладают весьма широким спектром действия, однако с клинической точки зрения существует группа микроорганизмов, являющихся исключением из спектра их активности. Речь идет об облигатных и факультативных внутриклеточных паразитах (риккетсии, хламидии, легионеллы, бруцеллы и др.). Отсутствие или низкий уровень клинической эффективности при инфекциях, вызываемых этими микроорганизмами, связан с ограниченной способностью БЛА проникать внутрь клеток макроорганизма, прежде всего фагоцитов, где и локализуется возбудитель.

    Данные об уровне природной активности БЛА в отношении основных клинически значимых микроорганизмов суммированы в табл. 3. В ней также приведены ориентировочные данные о частоте распространения среди этих микроорганизмов приобретенной устойчивости к отдельным БЛА. При общей характеристике БЛА используется принцип сопоставления активности отдельных БЛА в отношении различных микроорганизмов.

    Как следует из материалов таблицы, в отношении одного и того же микроорганизма высокий уровень микробиологической активности могут одновременно проявлять многие представители класса БЛА. Соответственно возникает проблема выбора оптимального средства. При решении этой проблемы до получения результатов оценки антибиотикочувствительности целесообразно руководствоваться следующими соображениями. Из группы препаратов, обладающих равной активностью в отношении известного возбудителя, лучше назначать антибиотики с более узким спектром действия. При эмпирической терапии, кроме спектра действия, который должен перекрывать максимальное количество вероятных патогенов, необходимо учитывать устойчивость препарата в отношении известных для этих микроорганизмов механизмов резистентности. Обязательным условием назначения БЛА является наличие подтвержденной клинической эффективности.

    Грамположительные микроорганизмы. Подавляющее большинство БЛА обладает высокой активностью в отношении грамположительных микроорганизмов, единственным исключением является группа монобактамов.

    Streptococcus spp. отличаются высоким уровнем чувствительности к БЛА. При этом наиболее активны природные пенициллины, что дает основание признать их средствами выбора при лечении стрептококковых инфекций. Между отдельными представителями полусинтетических пенициллинов и цефалоспоринов отмечают определенные различия в уровне активности, однако оснований считать их клинически значимыми нет.

    Среди S. pyogenes до сих пор не обнаружено ни одного штамма, устойчивого к пенициллину и соотвественно к другим БЛА. Среди других стрептококков частота резистентности подвержена значительным вариациям. Во всех случаях она связана с модификацией ПСБ, продукции бета-лактамаз у стрептококков не выявлено. Наибольшее практическое значение имеет распространение пенициллинрезистентных пневмококков в отдельных географических регионах (Испания, Франция, Венгрия), частота различной степени устойчивости достигает 60% [4, 5]. Масштабных, методологически корректных исследований о распространении устойчивости к пенициллину среди пневмококков на территории РФ не проводилось, однако ограниченные данные не дают оснований рассматривать в настоящее время этот феномен как серьезную проблему. Это не означает, что ситуация не может измениться в худшую сторону уже в ближайшее время. В некоторых сообщениях отмечается тенденция к повышению частоты резистентности к пенициллину среди стрептококков групп В [6] и Viridans [7], однако в целом находки таких штаммов остаются весьма редкими.

    Ферменты Характеристика.

    Стафилококковые бета-лактамазы, плазмидные, класс А Гидролизуют природные и полусинтетические пенициллины, кроме метициллина и оксациллина.

    Чувствительны к ингибиторам.

    Плазмидные бета-лактамазы грамоотрицательных бактерий широкого спектра, класс А Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I поколения.

    Чувствительны к ингибиторам.

    Плазмидные бета-лактамазы грамоотрицательных бактерий расширенного спектра, класс А Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I - IV поколений.

    Чувствительны к ингибиторам.

    Хромосомные бета-лактамазы грамоотрицательных бактерий, класс С Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I - III поколений.

    Не чувствительны к ингибиторам.

    Хромосомные бета-лактамазы грамоотрицательных бактерий, класс А Гидролизуют природные и полусинтетические пенициллины цефалоспорины I - II поколений. Чувствительны к ингибиторам.

    Хромосомные бета-лактамазы грамоотрицательных бактерий, класс В Эффективно гидролизуют практически все бета-лактамы, включая карбапенемы. Не чувствительны к ингибиторам.

    Предсказать чувствительность или устойчивость пенициллинрезистентных стрептококков к другим БЛА достаточно сложно. Часто активность сохраняют цефалоспорины III поколения, карбапенемы активны практически всегда. Полусинтетические пенициллины и цефалоспорины I - II поколений чаще всего неактивны [7]. Поскольку резистентность у стрептококков не связана с продукцией бата-лактамаз, защищенные препараты преимуществ не имеют. Наиболее полно вопросы перекрестной резистентности к БЛА изучены для пневмококков [8]. В настоящее время признано целесообразным при обнаружении штамма пневмококков, устойчивого к пенициллину, оценивать его чувствительность к другим БЛА методом серийных разведений.

    Enterococcus spp. отличаются значительно меньшей чувствительностью к БЛА, чем другие грамположительные микроорганизмы, что связано с пониженной аффинностью их ПСБ к этим антибиотикам [9]. Для энтерококков характерны выраженные межвидовые различия в чувствительности к БЛА, наибольшая чувствительность свойственна E. faecalis. E. faecium и другие редкие виды энтерококков следует считать природно устойчивыми, они синтезируют значительное количество ПСБ [5], отличающегося низкой аффинностью к БЛА [10].

    Из всех БЛА клинически значимой антиэнтерококковой активностью (в отношении E. faecalis) обладают природные, амино-, уреидопенициллины, частично цефалоспорины IV поколения и карбапенемы. Цефалоспорины I - III поколений реальной активностью не обладают. Препаратами выбора для лечения энтерококковых (E. faecalis) инфекций являются аминопенициллины. Важно отметить, что БЛА в отношении энтерококков проявляют только бактериостатическую активность, бактерицидное действие проявляется только при комбинации с аминогликозидами.

    Staphylococcus spp. (как S. aureus, так и коагулазонегативные) проявляют высокий уровень природной чувствительности к БЛА, наименьшими величинами минимальной подавляющей концентрации (МПК) отличаются природные и аминопенициллины. В ряду цефалоспоринов от I к III поколению наблюдается некоторое снижение активности, однако клинического значения это не имеет. Исключением являются оральные цефалоспорины цефиксим и цефтибутен, они практически лишены антистафилококковой активности.

    Стафилококки оказались первыми микроорганизмами, распространение приобретенной резистентности среди которых привело к резкому снижению эффективности традиционной терапии.Механизм действия бета-лактамных антибиотиков. Обязательным компонентом наружной мембраны прокариотических микроорганизмов (кроме микоплазм) является пептидогликан, представляющий собой биологический полимер, состоящий из параллельных полисахаридных цепей. Пептидогликановый каркас приобретает жесткость при образовании между полисахаридными цепями поперечных сшивок. Поперечные сшивки образуются через аминокислотные мостики, замыкание сшивок осуществляют ферменты карбокси- и транспептидазы (ПСБ). Бета-лактамные антибиотики способны связываться с активным центром фермента и подавлять его функцию. Специфическая активность антибиотиков определяется наличием бета-лактамного кольца. Боковые радикалы определяют фармакокинетические особенности, устойчивость к действию бета-лактамаз и другие второстепенные свойства. После внедрения в 40-х годах в медицинскую практику пенициллина менее чем через 10 лет частота резистентности к этому антибиотику в отдельных стационарах достигла 50%, а в настоящее время практически повсеместно, в том числе и в РФ, превышает 60 - 70% [11]. Устойчивость оказалась связанной с продукцией плазмидных бета-лактамаз, ее удалось сравнительно легко преодолеть путем создания полусинтетических пенициллинов (метициллина и оксациллина), а также цефалоспориновых антибиотиков, устойчивых к ферментативному гидролизу. Амино-, карбокси- и уреидопенициллины разрушаются этими ферментами так же эффективно, как и природные пенициллины, иногда наблюдают частичный гидролиз цефалоспоринов III поколения. Стафилококковые бета-лактамазы эффективно подавляются ингибиторами, что обеспечивает высокую активность защищенных пенициллинов.

    Однако уже в 1961 г. появились первые сообщения о выделении метициллинрезистентных стафилококков (МРС), как Staphylococcus
      1   2


    написать администратору сайта