Главная страница

Эссе на тему В чем смысл жизни. Эссе на тему в чем смысл жизни. 21мк1 Смирнов Антон Андреевич


Скачать 57.78 Kb.
Название21мк1 Смирнов Антон Андреевич
АнкорЭссе на тему В чем смысл жизни
Дата14.11.2021
Размер57.78 Kb.
Формат файлаdocx
Имя файлаЭссе на тему в чем смысл жизни.docx
ТипДокументы
#271438
страница3 из 4
1   2   3   4
Средней Азии, на

Кавказе и в степях Сарыарки эпосе Сардала). В эпосе упоминаются

племена усуней и канглы, говорится о разделении огузов на внутренних и внешних. Сам Коркут, от имени которого ведется повествование, был

реальной личностью, беком огузо-кыпчакского племени Кият. Казахи

считают его основоположником музыкальных произведений для кобыза, эпического жанра и искусства врачевания.

Эпос «Огыз-нама» впервые был записан в XIII в. Рашид ад Дином, затем в XVIII в. Абулгазы, однако появился он задолго до этого времени. Некоторые

ученые считают, что этот эпос был составлен в Жетысу или Кашгарии племенами карлыков. Основное действующее лицо эпоса - Огыз-каган, которому приписываются сверхъестественные силы. Поэма посвящена детству Огыз-кагана, его подвигам, победе над одноглазым великаном

Киятом, его женитьбе и рождению сыновей, носящим имена Солнце, Луна, Звезда, Небо, Гора, Море. Став правителем народа уйгур, Огыз-каган ведет войны с соседями, правителями Алтыном (Китай) и Урумом (Рум-Византия). В эпосе рассказывается о происхождении славян (Урусбек-оглы Саклаб),

карлыков (Кагарлык-бек), кангаров (Биллик Кангалук), кыпчаков (Улыг Орду-бек Кыпчак).

Вклад Аль-фараби в науку

В трудах Ал-Фараби нет резкого разделения философии и частных наук. В данном вопросе ему свойственно то отношение к системе знания, которое

сложилось в его эпоху. Прежде чем приступить к существу дела, два замечания вводного характера.

Во-первых, Ал-Фараби высоко ценит авторитет науки и занимающихся ею людей. Для науки нужны люди чистого сердца, высоких помыслов, лишенные всякого тщеславия и мелочного себялюбия. Атмосфера научного исследования формирует культуру человека, способность его быть

объективным и преклоняться перед истиной. Он нетерпим к тем, кто не

способен Е выполнять высокое предназначение человека науки и играет лишь роль камня преткновения. «А наука из-за тех, кто подвизается на ее поприще, из-за того, что она оказалась несостоятельной и бесполезной для них, теряет престиж и унижается». Во-вторых, изучение вклада Ал-Фараби в

естествознание и математику имеет принципиальное значение с точки зрения опровержения тех, кто говорит об отсутствии на «Востоке» самобытного

мышления, ибо развитие естествознания, по своей сути противоположное мистике и суеверию, факт чрезвычайной важности.

Прежде всего, необходимо отметить тождество методологических позиций Ал-Фараби и Галилея. Последний подчеркивает, что Аристотель предпочитает чувственный опыт всем рассуждениям. «… У нас в наш век

есть такие новые обстоятельства, которые, в этом я нисколько не сомневаюсь, заставили бы Аристотеля, если бы он жил в наше время, переменить свое

мнение». Сказанное относится и к Ал-Фараби. Подчеркивая внутреннее единство человеческой культуры, О. Нейгебауэр расценивает

исключительную роль астрономии, «поскольку она несет в своем медленном, но неуклонном прогрессе корни наиболее решающего события в

человеческой истории создания современных точных наук. Мне кажется, что проследить за этой особенной ветвью истории культуры стоило наших усилий, как бы отрывочны ни были полученные результаты». Выбирая

некоторые отрывки, заметим, что Галилей прямо ссылается на

предшественника Ал-Фараби Ал-Фаргани и на его старшего современника

Ал-Баттани. Что касается ученых позднейших времен, то следует отметить некоторые другие факты. Так, Ал-Бируни, между прочим, приводит сведения, которые показывают, что идея эквивалентности геоцентрической и гелиоцентрической систем подспудно жила на Востоке. Ал-Бируни пишет:

«Кроме того, вращение Земли ни в коей мере не уменьшает значения

астрономии, поскольку все явления астрономического характера так же хорошо можно объяснить этой теорией, как и другой». Под влиянием учения Ал-Фараби, Насир ад-Дин ат-Туси выступал против сложных механизмов птолемеевой теории Луны и Меркурия. Коперник использовал его

конструкции.

Комментарии Ал-Фараби к «Алмагесту» составлены на основе переработки текста Птолемея; в них авторский текст не выделен из слов толкователя и

содержание сочинения вольно и порою сжато излагается комментатором. Комментарии к «Алмагесту» написаны Ал-Фараби как учебно-

педагогическое сочинение, но в них имеются добавления и

усовершенствования методического характера. Например, в отличие от Птолемея движение планет Ал-Фараби по возможности изучает совместно, так как, по его мнению, у светил много общего как в астрономическом, так и в математическом отношении, и поэтому у него в девятой книге вмещено

содержание девятой, десятой и одиннадцатой книг «Алмагеста». Здесь мы встречаем ряд новых добавлений и примечаний, отражающих результаты

исследований самого Ал-Фараби, а также достижения его предшественников и современников.

Относительно положения о том, что Земля не совершает никакого

поступательного движения, Ал-Фараби замечает, что он в своей «Физике» дал другое доказательство невозможности движения Земли. Он подробно

останавливается на вопросах сферической астрономии. Ал-Фараби

совершенствует тригонометрический аппарат Птолемея: он везде заменяет хорды синусами, высказывает лемму, равносильную плоской теореме

синусов, и доказывает ее для вписанного прямоугольного треугольника, дает ряд разъяснений сущности действия составления отношений. Следует особо отметить, что, обобщая метод Птолемея по вычитанию одного числового отношения из другого, ал-Фараби фактически рассматривает каждое отношение как число. В своих комментариях он пользуется терминами

«число отношения» и «число линии АВ», которые явились важным шагом в расширении понятия числа. Эти идеи ал-Фараби в дальнейшем были успешно развиты ал-Бируни, Омаром Хайямом и другими мыслителями.

Введение тригонометрических функций (линий) и расширение понятия числа позволили Абу Насру алгебраизировать многие рассуждения

Птолемея. Ал-Фараби своими наблюдениями подтверждает важное открытие, сделанное его предшественниками, об изменении апогея Солнца, что является его заслугой в теории Солнца и показывает, что он был не только крупным теоретиком астрономии, но и превосходным практиком-наблюдателем.

Однако, сам Ал-Фараби считал это открытие заслугой астрономов обсерватории ал-Мамуна.

Комментарии к «Алмагесту» сыграли важную роль в освоении и развитии учеными мусульманского средневековья астро-номо-математического

наследия Птолемея. Свидетельством тому служит включение в

астрономический раздел энциклопедической «Книги исцеления» Ибн Сины этих комментариев Ал-Фараби.

Как изложение Абу Насром содержания птолемеевского сочинения, так в особенности его «Книга приложений к «Алмагесту»», содержащая

оригинальные разработки, еще не подвергались в литературе детальному

анализу. По единогласному мнению крупнейших историков арабской науки и философии, научные труды Ал-Фараби изучены далеко не полностью, почти не изучены его физико-математические труды.

Таким образом, Ал-Фараби в системе наук большое внимание уделяет

естественно-математическим наукам. Исходя из того, что в основе познания многообразия всего мира лежит познание чисел и величин, Ал-Фараби особое значение придает среди этих разделов арифметике и геометрии, а также искусству правильного логического мышления. По его утверждению, эти науки «проникают во все науки», так как они оперируют понятиями и отношениями, абстрагированными от реальных предметов и от реально

существующих взаимосвязей и взаимоотношений между этими предметами.

Так, геометрическое тело есть, не что иное, как реальное тело,

рассматриваемое только-с точки зрения его пространственной формы и размеров в полном отвлечении от всех других свойств. Это отвлечение обусловливает умозрительно-дедуктивный метод геометрии, причем ее выводы являются развитием непосредственного отражения в; сознании реальных пространственных форм, отношений и их взаимосвязей.

Характерно определение, данное Ал-Фараби последнему разделу математики «науке об искусных приемах» как науке о применении

математики на практике, т. е. прикладной области математики, касающейся

«естественных и ощущаемых тел». Мы еще возвратимся к «науке об искусных приемах».

Следует отметить, что до сих пор «Слово о классификаций-наук» рассматривалось односторонне как
1   2   3   4


написать администратору сайта