Главная страница
Навигация по странице:

  • 4.1. Костная система и ее функции У человека более 200 костей

  • Главная функция суставов

  • 4.2. Общее представление о мышечной системе человека и ее функциях В теле человека насчитывается более 600 мышц

  • Поперечно-полосатые мышцы

  • Основа мышц

  • 4.2.1. Скелетная мускулатура Скелетные мышцы

  • 4.2.3. Общее представление о морфофизиологическом механизме и энергетике мышечного сокращения

  • АТФ (аденозинтрифосфорная кислота)

  • 4.2.4. Понятие о кислородном запросе и кислородном долге Количество кислорода, необходимое для полного обеспечения выполняемой работы, называют кислородным запросом

  • 4.3. Кровь как физиологическая система, жидкая ткань и орган Кровь

  • Время кругооборота крови

  • 4тема морфология. 4. Морфофункциональные системы организма Принято выделять следующие системы организма


    Скачать 0.74 Mb.
    Название4. Морфофункциональные системы организма Принято выделять следующие системы организма
    Дата26.01.2023
    Размер0.74 Mb.
    Формат файлаdocx
    Имя файла4тема морфология.docx
    ТипДокументы
    #906673
    страница1 из 3
      1   2   3

    4. Морфофункциональные системы организма

    Принято выделять следующие системы организма:

    • костную (скелет человека);

    • мышечную, кровеносную;

    • дыхательную;

    • пищеварительную;

    • нервную;

    • систему крови;

    • желез внутренней секреции;

    • анализаторов и др.

     

    Эластичность, упругость костей зависит от наличия в них органических веществ, а твердость обеспечивается минеральными солями. Кости детей более эластичны и упруги: в них преобладают органические вещества; кости же пожилых людей более хрупки: они содержат большое количество неорганических веществ.Поделиться…

    Рассмотрим некоторые из них.

     

    4.1. Костная система и ее функции

    У человека более 200 костей (85 парных и 36 непарных), которые в зависимости от формы и функций делятся на:

    • трубчатые (кости конечностей);

    • губчатые (выполняют в основном защитную и опорную функции — ребра, грудина, позвонки и др.);

    • плоские (кости черепа, таза, поясов конечностей);

    • смешанные (основание черепа).

     

    В каждой кости содержатся все виды тканей, но преобладает костная, представляющая разновидность соединительной ткани. В состав кости входят органические и неорганические вещества. Неорганические вещества (65—70% сухой массы кости) — это в основном фосфор и кальций. Органические (30 — 35%) — это клетки кости, коллагеновые волокна.

    Эластичность, упругость костей зависит от наличия в них органических веществ, а твердость обеспечивается минеральными солями. Кости детей более эластичны и упруги: в них преобладают органические вещества; кости же пожилых людей более хрупки: они содержат большое количество неорганических веществ.

    На рост и формирование костей существенное влияние оказывают социально-экономические факторы: питание, окружающая среда и т.д. Дефицит питательных веществ, солей или нарушение обменных процессов, связанных с синтезом белка, незамедлительно отражаются на росте костей. Недостаток витаминов С, D, кальция или фосфора нарушает естественный процесс обызвествления и синтеза белка в костях, делает их более хрупкими. На изменение костей влияют и физические нагрузки. При систематическом выполнении значительных по объему и интенсивности статических и динамических упражнений кости становятся более массивными, в местах прикрепления мышц формируются хорошо выраженные утолщения — костные выступы, бугры и гребни. Происходит внутренняя перестройка компактного костного вещества, увеличиваются количество и размеры костных клеток, кости становятся значительно прочнее. Правильно организованная физическая нагрузка при выполнении силовых и скоростно-силовых упражнений способствует замедлению процесса старения костей.



    Все кости человека соединены посредством суставовсвязок и сухожилий.

    При систематических занятиях физическими упражнениями и спортом суставы развиваются и укрепляются, повышается эластичность связок и мышечных сухожилий, увеличивается гибкость. И, наоборот, при отсутствии движений разрыхляется суставной хрящ и изменяются суставные поверхности, сочленяющие кости, появляются болевые ощущения, возникают воспалительные процессы.Поделиться…

    Движение осуществляется с помощью сустава, в котором соединяются две кости. Суставы — подвижные соединения, область соприкосновения костей в которых покрыта суставной сумкой из плотной соединительной ткани. Суставная жидкость уменьшает трение между поверхностями при движении, эту же функцию выполняет и гладкий хрящ, покрывающий суставные поверхности.

    Сухожилия соединяют скелетные (произвольно сокращающиеся) мышцы с костями. Соединительная ткань сухожилий находится на обоих концах мышцы (в местах прикрепления).

    Суставная капсула прочно соединяется со связками — плотными волокнистыми структурами, соединяющими две кости. Они помогают стабилизировать сустав и предотвращают неестественные движения, позволяя в то же время совершать движения в нормальных условиях.

    Главная функция суставов — участвовать в осуществлении движений. Они выполняют роль демпферов, гасящих инерцию движения и позволяющих мгновенно останавливаться в процессе движения.

    При систематических занятиях физическими упражнениями и спортом суставы развиваются и укрепляются, повышается эластичность связок и мышечных сухожилий, увеличивается гибкость. И, наоборот, при отсутствии движений разрыхляется суставной хрящ и изменяются суставные поверхности, сочленяющие кости, появляются болевые ощущения, возникают воспалительные процессы.



    4.2. Общее представление о мышечной системе человека и ее функциях

    В теле человека насчитывается более 600 мышц. Мышцы составляют: у мужчин — 42% веса тела; у женщин — 35%; в пожилом возрасте — 30%; у спортсменов — 45—52%. Более 50% веса всех мышц располагается на нижних конечностях, 25—30% — на верхних конечностях; 20—25% — в области туловища и головы.

    Соотношение числа медленных и быстрых двигательных единиц в одной и той же мышце генетически обусловлено и может весьма значительно различаться.Поделиться…

    Мышечная система обеспечивает многообразные движения человека, вертикальное положение тела и различные позы в пространстве, фиксацию внутренних органов в определенном положении, дыхательные движения, усиление тока крови, лимфы и других жидкостей («мышечный насос»), теплорегуляцию и совместно с другими функциональными системами целый ряд других физиологических процессов.

    Существует три вида мускулатуры:

    • гладкая (непроизвольная);

    • поперечно-полосатая (произвольная);

    • сердечная.

     

    Гладкие мышцы расположены в стенках кровеносных сосудов и некоторых внутренних органах. Они сужают или расширяют сосуды, продвигают пищу по желудочно-кишечному тракту, сокращают стенки мочевого пузыря. Их работа не зависит от воли человека.

    Поперечно-полосатые мышцы — это все скелетные мышцы, которые обеспечивают многообразные движения тела. Их работа находится под волевым контролем.

    Основным морфофункциональным элементом нервно-мышечного аппарата является двигательная единица (ДЕ), состоящая из мотонейрона с иннервируемыми им мышечными волокнами. Число мышечных волокон, входящих в одну ДЕ, различно в разных мышцах (к примеру, в глазных мышцах одна ДЕ содержит 13—20 мышечных волокон, а ДЕ внутренней головки икроножной мышцы — 1500—2500).

    По морфологическим и функциональным особенностям ДЕ делятся на:

    • медленные, неутомляемые;

    • быстрые, устойчивые к утомлению;

    • быстрые, легкоутомляемые.

     

    Скелетные мышцы человека состоят из ДЕ всех трех типов: одни — из преимущественно медленных, другие — из преимущественно быстрых, третьи содержат и те и другие виды ДЕ. Соотношение числа медленных и быстрых ДЕ в одной и той же мышце генетически обусловлено и может весьма значительно различаться. Так, например, в четырехглавой мышце бедра человека соотношение медленных волокон может варьировать от 40 до 98%.

    Красные мышечные волокна имеют большой запас гликогена и липидов, обладают способностью к длительному напряжению и выполнению продолжительной динамической работы.

    Белые мышечные волокна сокращаются быстрее красных волокон, но не способны к длительному напряжению.Поделиться…

    Сердечная мышца состоит из поперечно-полосатых мышечных волокон. Они сокращаются быстро. Как и гладкие мышцы, сердечная мышца работает без участия воли человека.



    Основа мышц — белки, составляющие 80—85% мышечной ткани. Главное свойство мышечной ткани — сократимость. Она обеспечивается благодаря мышечным белкам — актину и миозину.

    Мышца имеет волокнистую структуру. Каждое волокно — это мышца в миниатюре. Совокупность этих волокон и образует мышцу в целом. Мышечное волокно в свою очередь состоит из миофибрилл.

    Различают красные мышечные волокна и белые мышечные волокна. Они содержатся в мышцах в разных пропорциях.

    Красные мышечные волокна имеют большой запас гликогена и липидов, обладают способностью к длительному напряжению и выполнению продолжительной динамической работы.

    Белые мышечные волокна сокращаются быстрее красных волокон, но не способны к длительному напряжению.

    К мышце подходят и от нее отходят (принцип рефлекторной дуги) многочисленные нервные волокна. Двигательные нервные волокна передают импульсы от головного и спинного мозга, приводящие мышцы в рабочее состояние; чувствительные волокна передают импульсы в обратном направлении, информируя центральную нервную систему о деятельности мышц.

    Каждую мышцу пронизывает разветвленная сеть капилляров, по которым поступают необходимые для жизнедеятельности мышц вещества и выводятся продукты обмена.

     

    4.2.1. Скелетная мускулатура

    Скелетные мышцы входят в структуру опорно-двигательного аппарата, крепятся к костям скелета и при сокращении приводят в движение отдельные звенья скелета.

    Они участвуют в удержании положения тела и его частей в пространстве, обеспечивают движения при ходьбе, беге, жевании, глотании, дыхании и т.д., вырабатывая при этом тепло. Скелетные мышцы обладают способностью возбуждаться под влиянием нервных импульсов. Возбуждение проводится до сократительных структур (миофибрилл), которые, сокращаясь, выполняют двигательный акт — движение или напряжение.

    У человека насчитывается около 600 мышц и большинство из них парные. В каждой мышце различают активную часть (тело мышцы) и пассивную (сухожилие).

    Мышцы, действие которых направлено противоположно, называются антогонистами, однонаправленно — синергистами. Одни и те же мышцы в различных ситуациях могут выступать в том и другом качестве.

    По функциональному назначению и направлению движений в суставах различают мышцы сгибатели и разгибателиприводящие и отводящиесфинктеры (сжимающие) и расширители.

     

    4.2.2. Краткий обзор скелетных мышц

    Мышцы туловища включают мышцы грудной клетки, спины и живота. Мышцы грудной клетки участвуют в движениях верхних конечностей, а также обеспечивают дыхательные движения. Мышцы спины участвуют в поддержании вертикального положения тела, при сильном напряжении вызывают прогибание туловища назад. Брюшные мышцы поддерживают давление внутри брюшной полости, участвуют в некоторых движениях тела, в процессе дыхания.

    Сокращение и напряжение мышцы осуществляется за счет энергии, освобождающейся при химических превращениях, которые происходят при поступлении в мышцу нервного импульса или нанесении на нее непосредственного раздражения. В качестве основного поставщика энергии выступает аденозинтрифосфорная кислота.Поделиться…

    Мышцы головы и шеи — мимические, жевательные, приводящие в движение голову и шею.

    Мышцы верхних конечностей обеспечивают движение плечевого пояса, плеча, предплечья и приводят в движение кисть и пальцы.

    Мышцы нижних конечностей обеспечивают движения бедра, голени и стопы. Многие мышцы бедра, голени и стопы принимают участие в поддержании тела человека в вертикальном положении. Мышцы передней и задней половин тела представлены на рис. 4.1,



    Рис 4.2.



    4.2.3. Общее представление о морфофизиологическом механизме и энергетике мышечного сокращения

    Морфофизиологический механизм мышечного сокращения и следующего за ним обязательного расслабления (релаксации) достаточно сложен и связан с особенностями строения и наличием характерных (специализированных) свойств мышцы. Скелетная мышца состоит из пучков вытянутых в длину клеток — мышечных волокон, обладающих тремя свойствами: возбудимостью, проводимостью и сократимостью. Свойство физиологической сократимости, присущее только мышечной клетке, обеспечивается присутствием в ней саркоплазматического ретикулума, который представляет собой замкнутую биологическую систему внутриклеточных образований, напоминающих трубочки и цистерны, окружающих каждую миофибриллу.

    Сокращение и напряжение мышцы осуществляется за счет энергии, освобождающейся при химических превращениях, которые происходят при поступлении в мышцу нервного импульса или нанесении на нее непосредственного раздражения. В качестве основного поставщика энергии выступает АТФ (аденозинтрифосфорная кислота).

    АТФ в организме играет роль «универсальной валюты», идущей на оплату всех энергетических потребностей живых клеток. Так как запасы АТФ в мышцах невелики, чтобы поддерживать их деятельность, необходим непрерывный ресинтез АТФ. Его восполнение и образование энергии в принципе происходит двумя способами — в зависимости от того, присутствует при этом кислород или нет.

    Реакции, совершающиеся в бескислородной среде получили название анаэробных. Освобождение энергии в этом случае происходит за счет мгновенного расщепления богатых энергией веществ на менее богатые. Последнее звено в этом расщеплении — когда гликоген превращается в молочную кислоту.

    Гликоген — сложный вид сахара, родственный крахмалу. Сахар и другие виды углеводов, которые мы потребляем, накапливается в организме в виде гликогена. Следовательно, для простоты можно записать:

    гликоген → молочная кислота + энергия

    Этот механизм расщепления может давать большой эффект, и он может использоваться при кратковременной максимальной работе (спринтерский бег, бег вверх по лестнице), когда необходимо внезапно проявить силу, а кровоснабжение мышц при этом недостаточно. Недостаток же заключается в том, что в работающих мышцах накапливается молочная кислота и им становится трудно справляться с воздействием кислой среды. Молочная кислота для мышцы является веществом утомления, и поэтому мышца может работать только незначительное время.

    Реакции, происходящие с участием кислорода, получили название аэробных. Образование энергии и восстановление запасов АТФ в этом случае происходит за счет окисления углеводов и жиров. При этом образуются углекислый газ и вода. Часть энергии расходуется на восстановление молочной кислоты в глюкозу и гликоген. При этом обеспечивается ресинтез АТФ:

    углеводы + жиры → углекислый газ + вода + энергия

    Аэробный ресинтез АТФ отличается высокой экономичностью, а также универсальностью в использовании субстратов: окисляются все органические вещества организма (аминокислоты, белки, углеводы, жирные кислоты и др.). Однако он требует потребления кислорода, доставка которого в мышечную ткань обеспечивается дыхательной и сердечно-сосудистой системами, что естественно связано с их напряжением. Кроме того, развертывание аэробного образования АТФ продолжительно по времени и невелико по мощности.

     

    4.2.4. Понятие о кислородном запросе и кислородном долге

    Количество кислорода, необходимое для полного обеспечения выполняемой работы, называют кислородным запросом. Но органы кислородного снабжения «тяжелы на подъем», они не могут быстро удовлетворить кислородный запрос. Поэтому образуется кислородный долг.

    Обычно в общем кислородном долге различают две фракции: алактатную и лактатную.

    Первую связывают с ресинтезом АТФ и с восполнением израсходованных кислородных резервов организма. Эта часть кислородного долга оплачивается очень быстро (не более, чем за 1—1,5 мин).

    Вторая фракция отражает окислительное устранение лактатов (молочной кислоты). Ликвидация лактатной фракции кислородного долга происходит более медленными темпами (от нескольких минут до 1,5 часа).

     

    4.3. Кровь как физиологическая система, жидкая ткань и орган

    Кровь (в совокупности с лимфой и тканевой жидкостью представляет внутреннюю среду организма) — жидкая ткань, циркулирующая в кровеносной системе и обеспечивающая жизнедеятельность клеток и тканей организма в качестве органа и физиологической системы.

    Play Video

    За счет реализации транспортной функции обеспечивает постоянство основных физиологических и биохимических параметров, осуществляя гуморальную связь между функциональными системами и тканями организма.

    Время кругооборота крови — это тот промежуток времени, за который кровь проходит через большой и малый круги кровообращения. В покое время полного кругооборота крови у человека составляет 20—23 с. При физических нагрузках различной мощности, объема и интенсивности оно может снижаться в 2—2,5 раза, достигая при интенсивных нагрузках 8—10 с.

    Жидкое состояние крови и замкнутость кровеносного русла являются необходимыми условиями жизнедеятельности организм. Эти условия обеспечиваются системами свертывания (гемокоагуляции) и антисвертывания (гемоантикоогуляции) крови.



    Кровь состоит из плазмы (54—58%) и взвешенных в ней форменных элементов: эритроцитов, лейкоцитов, тромбоцитов (42—46%) и ряда других веществ. Образование форменных элементов крови называется гогмопоэзом и осуществляется в кроветворных органах: в костном мозге образуются эритроциты, тромбоциты, нейтрофилы, эозинофилы и базофилы; в селезенке и лимфатических узлах — лимфоциты; моноциты (самые крупные клетки белой крови, обладающие самой высокой фагоцитарной активностью по отношению к продуктам распада клеток и тканей, а также обезвреживающие токсины в очагах воспаления) — в костном мозге, селезенке и лимфатических узлах.
      1   2   3


    написать администратору сайта