Лекция физика. Лекция. Законы идеальных газов (2). 4. Законы идеальных газов Совокупность тел, составляющих макроскопическую систему, называется термодинамической системой
Скачать 408.82 Kb.
|
4. Законы идеальных газовСовокупность тел, составляющих макроскопическую систему, называется термодинамической системой.Система может находиться в различных состояниях. Величины, характеризующие состояние системы, называются параметрами состояния: давление P, температура T, объём V и так далее.Связь между P, T, V специфична для каждого тела и называется уравнением состояния.Любой параметр, имеющий определённое значение для каждого равновесного состояния, является функцией состояния системы. Равновесной, называется такая система, параметры состояния которой одинаковы во всех точках системы и не изменяются со временем (при неизменных внешних условиях). При этом в равновесии находятся отдельные, макроскопические части системы Процесс – переход из одного равновесного состояния в другое. Релаксация – возвращение системы в равновесное состояние. Время релаксации – время перехода в равновесное состояние. Если равновесие установилось, то система самопроизвольно не сможет выйти из него. Например, если опустить горячий камень в холодную воду, то, через некоторое время наступит равновесное состояние: температуры выровняются. Но обратный процесс невозможен – температура камня самопроизвольно не увеличится. Атомная единица массы (а.е.м.) – (mед) – единица массы, равная 1/12 массы изотопа углерода 12С – mC: Атомная масса химического элемента (атомный вес) А, есть отношение массы атома этого элемента mA к 1/12 массы изотопа углерода С12 (атомная масса – безразмерная величина). Молекулярная масса (молекулярный вес): Отсюда можно найти массу атома и молекулы в килограммах:В термодинамике широко используют понятия киломоль, моль, число Авогадро и число Лошмидта. Моль – это стандартизированное количество любого вещества, находящегося в газообразном, жидком или твердом состоянии. 1 моль – это количество грамм вещества, равное его молекулярной массе. В 1811 г. Авогадро высказал предположение, что число частиц в киломоле любого вещества постоянно и равно величине, названной, в последствии, числом Авогадро Молярная масса – масса одного моля (µ) Идеальный газ – это газ для которого: - радиус взаимодействия двух молекул много меньше среднего расстояния между ними (молекулы взаимодействуют только при столкновении); - столкновения молекул между собой и со стенками сосуда – абсолютно упругие (выполняются законы сохранения энергии и импульса); - объем всех молекул газа много меньше объема, занятого газом.Рассмотрим подробнее, что представляет собой один из основных параметров состояния – давление P.Ещё в XVIII веке Даниил Бернулли предположил, что давление газа – есть следствие столкновения газовых молекул со стенками сосуда.Именно давление чаще всего является единственным сигналом присутствия газа.Итак, находящиеся под давлением газ или жидкость действуют с некоторой силой на любую поверхность, ограничивающую их объем. В этом случае сила действует по нормали к ограничивающей объем поверхности. Давление на поверхность равно: где ΔF – сила, действующая на поверхность площадью ΔS Давление внутри газа или жидкости можно измерить, помещая туда небольшой куб с тонкими стенками, наполненный той же средой. Поскольку среда покоится, на каждую грань куба со стороны среды действует одна и та же сила ΔF. В окрестности куба давление равно ΔF/ΔS, где ΔS – площадь грани куба. Внутреннее давление является одним и тем же во всех направлениях, и, во всем объеме независимо от формы сосуда. Этот результат называется законом Паскаля: если к некоторой части поверхности, ограничивающей газ или жидкость, приложено давление P0, то оно одинаково передается любой части этой поверхности. Вычислим давление, оказываемое газом на одну из стенок сосуда. Обозначим: n – концентрация молекул в сосуде; m0 – масса одной молекулы, - проекция вектора скорости на направление, перпендикулярное стенке. Движение молекул по всем осям равновероятно, поэтому к одной из стенок сосуда площадью S в единицу времени подлетает молекул. Каждая молекула обладает импульсом m0υx, но стенка получает импульс (при абсолютно-упругом ударе ). За время dt о стенку площадью S успеет удариться число молекул, которое заключено в объёме V: Общий импульс, который получит стенка S: Разделив обе части равенства на S и dt; получим выражение для давления: Таким образом, мы определили давление, как силу, действующую в единицу времени на единицу площади: Молекулы имеют разные скорости, направленные в разные стороны, то есть скорости газовых молекул – случайная величина. Более точно случайную величину характеризует среднеквадратичная величина. Под скоростью необходимо понимать среднеквадратичную скорость Вектор скорости, направленный произвольно в пространстве, можно разделить на три составляющих: Ни одной из этих проекций нельзя отдать предпочтение из-за хаотичного теплового движения молекул, то есть в среднем Следовательно, на другие стенки будет точно такое же давление. Тогда можно записать в общем случае: где – средняя энергия одной молекулы. Это основное уравнение молекулярно-кинетической теории газов. Давление газов определяется средней кинетической энергией поступательного движения молекул. Единицы измерения давления. По определению, поэтому размерность давления 1 Н/м2 = 1Па; 1 атм.= 9,8 Н/см2 = 98066 Па 105 Па 1 мм рт.ст. = 1 тор = 1/760 атм. = 133,3 Па 1 бар = 105 Па; 1 атм. = 0,98 бар. Если привести в соприкосновение два тела: горячее и холодное, то через некоторое время их температуры выровняются.В системе изменяется средняя кинетическая энергия движения молекул, из которых состоят эти тела.Она служит характеристикой системы в состоянии равновесия.Это свойство позволяет определить параметр состояния, выравнивающийся у всех тел, контактирующих между собой, как величину, пропорциональную средней кинетической энергии частиц в сосуде.Чтобы связать энергию с температурой, Больцман ввел коэффициент пропорциональности k, который впоследствии был назван его именем: где k – постоянная Больцмана k = 1,38·1023 Дж·К1. Величину T называют абсолютной температурой и измеряют в градусах Кельвина (К). Она служит мерой кинетической энергии теплового движения частиц идеального газа. Обозначим где R – универсальная газовая постоянная: Так как температура определяется средней энергией движения молекул, то она, как и давление, является статистической величиной, то есть параметром, проявляющимся в результате совокупного действия огромного числа молекул. Поэтому не говорят: «температура одной молекулы», нужно сказать: «энергия одной молекулы, но температура газа». Основное уравнение молекулярно-кинетической теории можно записать по другому. Так как Отсюда В таком виде основное уравнение молекулярно-кинетической теории употребляется чаще. Наиболее естественно было бы использовать для измерения температуры определениет.е. измерять кинетическую энергию поступательного движения молекул газа. Однако чрезвычайно трудно проследить за молекулой газа и еще сложнее за атомом. Поэтому для определения температуры идеального газа используется уравнениеДействительно, величины P и V легко поддаются измерению. В качестве примера рассмотрим простейший газовый термометр с постоянным давлением. Объем газа в трубке как мы видим, пропорционален температуре, а поскольку высота подъема ртутной капли пропорциональна V, то она пропорциональна и Т. Существенно то, что в газовом термометре необходимо использовать идеальный газ. Если же в трубку вместо идеального газа поместить фиксированное количество жидкой ртути, то мы получим обычный ртутный термометр. Хотя ртуть далеко не идеальный газ, вблизи комнатной температуры ее объем изменяется почти пропорционально температуре. Термометры, в которых вместо идеального газа используются какие-либо другие вещества, приходится калибровать по показаниям точных газовых термометров. В физике и технике за абсолютную шкалу температур принята шкала Кельвина, названная в честь знаменитого английского физика, лорда Кельвина. 1 К – одна из основных единиц системы СИ Кроме того, используются и другие шкалы: – шкала Фаренгейта (немецкий физик 1724 г.) – точка таянья льда 32F, точка кипения воды 212F. – шкала Цельсия (шведский физик 1842г.) – точка таянья льда 0С, точка кипения воды 100С. 0С = 273,15 К. Свойства температуры:
Современная термометрия основана на шкале идеального газа, где в качестве термометрической величины используют давление. Шкала газового термометра – является абсолютной (Т = 0; Р = 0). В XVII – XIX веках были сформулированы опытные законы идеальных газовИзопроцессы идеального газа – процессы, при которых один из параметров остаётся неизменным.1.Изохорический процесс. V = const. Изохорическим процессом называется процесс, протекающий при постоянном объёме V. Поведение газа при этом изохорическом процессе подчиняется закону Шарля: P/Т = const: «При постоянном объёме и неизменных значениях массы газа и его молярной массы, отношение давления газа к его абсолютной температуре остаётся постоянным». Уравнение изохоры: Если температура газа выражена в градусах Цельсия, то уравнение изохорического процесса записывается в виде где Р0 – давление при 0С по Цельсию; α температурный коэффициент давления газа равен 1/273 град1. 2. Изобарный процесс. Р = const. Изобарным процессом называется процесс, протекающий при постоянном давлении Р. Поведение газа при изобарном процессе подчиняется закону Гей-Люссака: V/T = const «При постоянном давлении и неизменных значениях массы и газа и его молярной массы, отношение объёма газа к его абсолютной температуре остаётся постоянным». Уравнение изобары Если температура газа выражена в градусах Цельсия, то уравнение изобарного процесса записывается в виде где температурный коэффициент объёмного расширения.3. Изотермический процесс. T = const. Изотермическим процессом называется процесс, протекающий при постоянной температуре Т. Поведение идеального газа при изотермическом процессе подчиняется закону Бойля-Мариотта: РV = const «При постоянной температуре и неизменных значениях массы газа и его молярной массы, произведение объёма газа на его давление остаётся постоянным».Уравнение изотермы 4. Адиабатический процесс (изоэнтропийный). Процесс, происходящий без теплообмена с окружающей средой. 5. Политропный процесс. Процесс, при котором теплоёмкость газа остаётся постоянной. Политропный процесс – общий случай всех перечисленных выше процессов. 6. Закон Авогадро. При одинаковых давлениях и одинаковых температурах, в равных объёмах различных идеальных газов содержится одинаковое число молекул. В одном моле различных веществ содержится молекул (число Авогадро). 7. Закон Дальтона. Давление смеси идеальных газов равно сумме парциальных давлений Р, входящих в неё газов (Р1 – давление, которое оказывал бы определённый газ из смеси, если бы он занимал весь объём). 8. Объединённый газовый закон (Закон Клапейрона). В соответствии с законами Бойля - Мариотта (1.4.5) и Гей-Люссака (1.4.3) можно сделать заключение, что для данной массы газа Это объединённый газовый закон Клапейрона. Идеальным газом называют газ, молекулы которого пренебрежимо малы, по сравнению расстояния между ними, и не взаимодействуют друг с другом на расстоянии.Все газы, при нормальных условиях, близки по свойствам к идеальному газу. Ближе всех газов к идеальному газу – водород.Уравнение, связывающее основные параметры состояния идеального газа вывел великий русский ученый Д.И. Менделеев.Менделеев объединил известные нам законы Бойля-Мариотта, Гей-Люссака и Шарля с законом Авогадро. Уравнение, связывающее все эти законы, называется уравнением Менделеева-Клапейрона: Для одного моля можно записатьЕсли обозначим – плотность газа, то Если рассматривать смесь газов, заполняющих объём V при температуре Т, тогда, парциальные давления, можно найти, как: , , …..Согласно закону Дальтона: полное давление смеси газа равно сумме парциальных давлений всех газов, входящих в смесь Отсюда, с учетом вышеизложенного, можно записать – это уравнение Менделеева-Клапейрона для смеси газов. |