Главная страница
Навигация по странице:

  • Цели обучения

  • Критерии оценивания

  • СОЧ №1, Алгебра 9 класс, I вариант

  • СОЧ №1, Алгебра 9 класс, II вариант

  • 9 СОЧ -1. 9 СОЧ-1 Алгебра. 9. 1а уравнения, неравенства с двумя переменными и их системы


    Скачать 20.1 Kb.
    Название9. 1а уравнения, неравенства с двумя переменными и их системы
    Анкор9 СОЧ -1
    Дата14.02.2023
    Размер20.1 Kb.
    Формат файлаdocx
    Имя файла9 СОЧ-1 Алгебра.docx
    ТипДокументы
    #936141

    Алгебра 9 класс СОЧ -1

    Тема:

    9.1А Уравнения, неравенства с двумя переменными и их системы

    9.1В Элементы комбинаторики

    Цели обучения:

    9.2.2.1 различать линейные и нелинейные уравнения с двумя переменными;

    9.2.2.2 решать системы нелинейных уравнений с двумя переменными;

    9.4.2.1 решать текстовые задачи с помощью систем уравнений;

    9.4.3.1 составлять математическую модель по условию задачи;

    9.2.2.3 решать неравенства с двумя переменными;

    9.2.2.4 решать системы нелинейных неравенств с двумя переменными

    6.1.2.11 изображать подмножества рациональных чисел с помощью кругов Эйлера-Венна;

    9.3.1.6 знать и применять формулу бинома Ньютона и его свойства;

    Критерии оценивания:

    - различает линейные и нелинейные уравнения с двумя переменными;

    -решает системы нелинейных уравнений с двумя переменными;

    - решает текстовые задачи с помощью систем уравнений;

    - составляет математическую модель по условию задачи;

    - решает неравенства с двумя переменными;

    - решает системы нелинейных неравенств с двумя переменными

    - изображает подмножества рациональных чисел с помощью кругов Эйлера-Венна;

    -знает и применяет формулу бинома Ньютона и его свойства;

    -решает задачи, используя формулы комбинаторики;

    - решает уравнения, используя правило комбинаторики

    СОЧ №1, Алгебра 9 класс, I вариант

    1.Решите систему уравнений: (5 балла)

    2.Изобразите множество точек, заданных системой неравенств:

    (5 баллов)

    3. Два насоса, работая вместе , могут заполнить бассейн за 4 часа. Первый насос заполнит бассейн за 12 часов. За сколько часов заполнит бассейн второй насос?

    (5 баллов)

    4. В классе 10 юношей и 8 девушек занимаются спортом. Сколькими способами можно составить из них команду для участия в соревнованиях в составе

    4 юношей и 3 девушек? (5 баллов)

    СОЧ №1, Алгебра 9 класс, II вариант

    1.Решите систему уравнений: ; (5 баллов)

    2.Изобразите множество точек, заданных системой неравенств:

    (5 баллов)

    3. Два насоса , работая вместе, заполнят бассейн за 12 часов. Первый бассейн в 1,5 раза быстрее, чем второй. За сколько часов заполняет бассейн первый насос? (5 балла)

    4. В классе 10 юношей и 8 девушек занимаются спортом. Сколькими способами можно составить из них команду для участия в соревнованиях в составе

    4 юношей и 4 девушек? (5 баллов)

    СОЧ I четверть Алгебра

    Критерии оценивания

    задания

    Дескрипторы


    Балл

    Применяет методы решения систем нелинейных уравнений с двумя переменными


    1

    Выражает одну переменную через другую

    1

    Использует метод подстановки

    1

    Решает полученное уравнение

    1

    Находит решения системы уравнений

    1

    Запишет правильно ответ

    1

    Решает системы нелинейных неравенств с двумя переменными

    2

    Изображает множество решений неравенства 1

    2

    Изображает множество решений неравенства 2

    2

    Показывает пересечение множеств решений неравенств

    1

    Составляет уравнение для решения текстовых задач


    3

    Запишет краткое условие

    1

    Составляет уравнение

    1

    Решает уравнение

    2

    Записывает ответ соответствии условием задачи

    1

    Решает задачу с применением правил комбинаторики

    4

    Применяет формулу сочетания без повторений для нахождения 4 юношей из 10. Вычисляет

    2

    Применяет формулу сочетания без повторений для нахождения 3 (4) девушек из 8. Вычисляет

    1

    Применяет правило сложения комбинаторики и вычисляет число сложения комбинаторики

    2













    Всего баллов

    20


    написать администратору сайта