Новиковы методология науч иследования. А. М. Новиков Д. А. Новиков методология научного исследования
Скачать 1.55 Mb.
|
Статистические методы. При планировании и подведе- нии результатов эксперимента существенную роль играют статистические методы, которые дают возможность: - компактно и информативно описывать результаты экс- перимента; - устанавливать степень достоверности сходства и разли- чия исследуемых объектов на основании результатов измере- ний их показателей; - анализировать наличие или отсутствие зависимости ме- жду различными показателями (явлениями); - количественно описывать эти зависимости; - выявлять информативные показатели; - классифицировать изучаемые объекты и прогнозировать значения их показателей и характеристик, и др. Рассмотрим следующую модель эксперимента [55, 56]. Пусть имеется некоторый объект, изменение состояния которого исследуется в ходе эксперимента. В качестве объек- та в медицине может выступать группа лабораторных живот- ных, в педагогике – группа обучающихся, в экономике – множество предприятий отрасли или региона и т.д. Состоя- ние объекта измеряется 24 теми или иными показателями 24 Измерение – «процесс определения какой-либо мерой величины чего- либо». Величина – «то (предмет, явление и т.д.), что можно измерить, 226 Приложение 3 (характеристиками) по критериям, отражающим его суще- ственные характеристики. Примерами критериев являются: - в медицине: выраженность интоксикации, выживае- мость в группе животных на определенный период после начала опыта и т.д. Примерами характеристик – температура, активность тех или иных ферментов в биологических жидко- стях, количественные показатели структуры внутренних органов и т.д.; - в педагогике: успешность выполнения учащимися тес- тов, скорость выполнения контрольных заданий и т.д. Харак- теристики – число правильно решенных задач, время выпол- нения заданий и т.д.; - в экономике: эффективность функционирования про- мышленного предприятия, темпы развития региональной экономики и т.д. Характеристики – годовая прибыль, уровень капитализации, валовой доход на душу населения и т.д. Эксперимент заключается в целенаправленном воздейст- вии на объект, призванном изменить его определенным обра- зом. Примерами воздействия являются: любые методы воз- действия на болезнь с целью ее излечения, хирургические манипуляции – в медицине; новые методы и/или средства обучения – в педагогике; параметры госрегулирования и/или управленческая политика руководства предприятия – в эко- номике и т.д. Следовательно, при проведении эксперимента необходи- мо обосновать, что состояние объекта изменилось, причем в требуемую сторону. Но этого оказывается недостаточно. Ведь нужно доказать, что изменения произошли именно в резуль- исчислить». Другими словами, величина – мера некоторого множества, относительно элементов которого имеют смысл утверждения – больше, меньше, равно. Мера – «единица измерения». Показатель – «то, по чему можно судить о развитии и ходе чего-либо». Критерий – «1) средство для вынесения суждения; стандарт для сравнения; правило для оценки; 2) мера степени близости к цели». Все определения здесь взяты из слова- ря русского языка С.И. Ожегова. Об измерениях и анализе эмпирических данных 227 тате произведенного воздействия (так называемая задача изучения сходства/различий – см. ниже). Действительно, например, на утверждение о том, что в ходе медико-биологического эксперимента температура тела у экспериментального животного снизилась в результате использования нового испытуемого вещества, можно всегда возразить, – а, может быть, она снизилась бы сама, без каких- либо нововведений, или в результате каких-либо других воздействий? Аналогично, на утверждение о том, что ско- рость и степень снижения температуры у животных, которым вводился новый препарат, отличаются от того, как это проис- ходило у животных, которых лечили с применением тради- ционных препаратов, можно возразить, – а, может быть, сама группа имела до начала эксперимента какие-то внутренние отличия, позволившие ей продемонстрировать подобные «успешные» результаты. Таким образом, для того, чтобы выделить в явном виде результат целенаправленного воздействия на исследуемый объект, необходимо взять аналогичный объект и посмотреть, что происходит с ним в отсутствии воздействий. Традиционно эти два объекта называют соответственно экспериментальной группой (иногда основной) и контроль- ной группой (или группой сравнения). На Рис. 15 представлена в общем виде структура экспе- римента (двойными пунктирными стрелками отмечены про- цедуры сравнения 25 характеристик объектов). 25 При этом мы по умолчанию подразумеваем, что методы измерения характеристик объектов одинаковы. 228 Приложение 3 Начальное состояние Конечное состояние Время Экспериментальная группа Контрольная группа Экспериментальная группа Контрольная группа I II III IV Экспериментальная методика (воздействие) Традиционная методика (воздействие) Рис. 15. Структура эксперимента Констатации (в результате сравнения III – см. Рис. 15) различий начального и конечного состояний (динамики) экспериментальной группы недостаточно – быть может, аналогичные изменения происходят и с контрольной группой, что может быть установлено сравнением IV. Поэтому алго- ритм действий исследователя заключается в следующем: 1) На основании сравнения I установить совпадение 26 на- чальных состояний экспериментальной и контрольной груп- пы; 2) Реализовать воздействие на экспериментальную груп- пу 27 по экспериментальной методике; 26 Если говорить корректно, то с точки зрения математической стати- стики совпадение установить невозможно – можно установить разли- чие или отсутствие статистически значимого различия. Об измерениях и анализе эмпирических данных 229 3) Реализвать воздействие на контрольную группу по традиционной методике; 4) На основании сравнения II установить различие конеч- ных состояний экспериментальной и контрольной группы. После выполнения четырех перечисленных шагов можно приступать к изучению зависимостей между различными характеристиками объектов (см. ниже). Легко видеть, что, выполняя перечисленные шаги 28 , мы, фактически, косвенным образом реализуем процедуру срав- нения III, исключая влияние общих для экспериментальной и контрольной группы условий и воздействий. Итак, мы описали задачу определения сходства/различий. На самом деле спектр задач анализа данных гораздо шире. Можно выделить следующие общие группы этих задач (см. Табл. 10): 1. Описание данных –компактное описание имеющихся данных с помощью различных агрегированных (обобщенных) показателей и графиков. К этому классу можно отнести также задачу определения необходимого объема выборки 29 (мини- мального числа исследуемых объектов), необходимого для того, чтобы сделать обоснованные выводы. В практике научных исследований обычно имеется сово- купность наблюдений (десятки, сотни, а иногда – тысячи результатов измерений индивидуальных характеристик), поэтому возникает задача компактного описания имеющихся данных. Для этого используют методы описательной стати- стики – описания результатов с помощью различных агреги- 27 При выполнении данного шага необходимо быть уверенным, что и экспериментальная, и контрольная группы находятся в одинаковых условиях, за исключением целенаправленно изменяемых исследователем. 28 Эксперимент может следовать и более сложной, но укладывающейся в рамки описанной идеологии, схеме – например, характеристики кон- трольных и экспериментальных групп могут измеряться и сравниваться неоднократно, в различные моменты времени. 29 Выборка – совокупность значений одного и того же признака у наблю- даемых объектов. 230 Приложение 3 рованных показателей и графиков. Перечислим некоторые из них. Табл. 10 Задачи анализа экспериментальных данных З А Д А Ч А Описание данных Изучение сходства/ различий Исследование зависимостей Снижение размерности Классификация М Е Т О Д Ы - описательная статистика, - определение необходимого объема выборки. Статистиче- ские критерии: Крамера- Уэлча, Вилкок- сона-Манна- Уитни, c 2 , Фишера. - корреляционный анализ, - дисперсионный анализ, - регрессионный анализ. - факторный анализ, - метод глав- ных компо- нент. - дискриминантный анализ, - кластерный анализ, - группировка. 232 Приложение 3 Для результатов измерений в шкале отношений (см. опи- сание шкал измерений выше) показатели описательной стати- стики можно разбить на несколько групп: - показатели положения описывают положение экспери- ментальных данных на числовой оси. Примеры таких данных – максимальный и минимальный элементы выборки, среднее значение 30 , медиана 31 , мода 32 и др.; - показатели разброса описывают степень разброса дан- ных относительно своего центра (среднего значения). К ним относятся: выборочная дисперсия 33 , разность между мини- мальным и максимальным элементами (размах, интервал выборки) и др. - показатели асимметрии: положение медианы относи- тельно среднего (величина разности их значений) и др. - гистограмма 34 и др. Данные показатели используются для наглядного пред- ставления и первичного («визуального») анализа результатов измерений характеристик экспериментальной и контрольной группы. 2. Изучение сходства/различий (сравнение двух выбо- рок).Например, требуется установить, достоверно ли разли- чие конечных состояний экспериментальной и контрольной 30 Имеется в виду среднее арифметическое значение. 31 Медианой называется значение исследуемого признака, справа и слева от которого находится одинаковое число упорядоченных элементов выборки. Если объем выборки – четное число, то медианой является среднее арифметическое двух центральных членов. 32 Модой называется такое значение измеренного признака, которым обладает максимальное число элементов выборки, то есть значение, которое встречается в выборке наиболее часто. 33 Выборочная дисперсия рассчитывается как средняя сумма квадратов разностей между элементами выборки и средним значением. Дисперсия характеризует степень разброса элементов выборки вокруг среднего значения. 34 Гистограммой называется графическое изображение зависимости частоты попадания элементов выборки от соответствующего интерва- ла группировки (диапазона значений показателя). Об измерениях и анализе эмпирических данных 233 группы в эксперименте (см. выше). Или, например, задача заключается в установлении совпадений или различий харак- теристик двух выборок (например, требуется установить, что средние значения доходов населения в двух регионах (или средние значения производительности труда в двух отраслях народного хозяйства и т.д.) совпадают или различаются). Для этого формулируются статистические гипотезы: - гипотеза об отсутствии различий (так называемая нуле- вая гипотеза); - гипотеза о значимости (достоверности) различий (так называемая альтернативная гипотеза). Для принятия решения о том, какую из гипотез (нулевую или альтернативную) следует принять, используют решаю- щие правила – статистические критерии 35 . То есть, на осно- вании информации о результатах наблюдений (характеристи- ках членов экспериментальной и контрольной группы) по известным формулам (см., например, [65, 86]) вычисляется число, называемое эмпирическим значением критерия. Это число сравнивается с известным (например, заданным таб- лично в соответствующих книгах по математической стати- стике [65, 86]) эталонным числом, называемым критическим значением критерия. Критические значения приводятся, как правило, для не- скольких уровней значимости. Уровнем значимости называ- ется вероятность ошибки, заключающейся в непринятии нулевой гипотезы, когда она верна, то есть вероятность того, что различия сочтены существенными, а они на самом деле случайны. Обычно используют уровни значимости (обозначаемые a ), равные вероятности 0,05, или 0,01, или 0,001. Или, пере- водя в проценты, выборки не различаются с вероятностями 5 %, 1 %, 0,1 %. Соответственно, вероятности того, что вы- 35 Заметим, что в математической статистике исторически сложилось называть статистическими критериями не только решающие правила, но и методы расчета определенного числа (используемого в решающих правилах), а также само это число. 234 Приложение 3 борки различаются составят 0,95, 0,99, 0,999, или в процентах – 95 %, 99 % и 99,9 %. В экономических, педагогических, психологических, медико-биологических экспериментальных исследованиях обычно ограничиваются значением 0,05, то есть допускается не более чем 5 %-ая возможность ошибки (95 % уровень достоверности различий). В естественных, технических науках чаще требуются уровни достоверности различий 99 % или 99,9 %. Если полученное исследователем эмпирическое значение критерия оказывается меньше или равно критическому, то принимается нулевая гипотеза – считается, что на заданном уровне значимости (то есть при том значении a , для которого рассчитано критическое значение критерия) характеристики экспериментальной и контрольной групп совпадают. В про- тивном случае, если эмпирическое значение критерия оказы- вается строго больше критического, то нулевая гипотеза отвергается и принимается альтернативная гипотеза – харак- теристики экспериментальной и контрольной группы счита- ются различными с достоверностью различий 1 – a . Напри- мер, если a = 0,05 и принята альтернативная гипотеза, то достоверность различий равна 0,95 или 95%. Другими словами, чем меньше эмпирическое значение критерия (чем левее оно находится от критического значе- ния), тем больше степень совпадения характеристик сравни- ваемых объектов. И наоборот, чем больше эмпирическое значение критерия (чем правее оно находится от критическо- го значения), тем сильнее различаются характеристики срав- ниваемых объектов. Итак, если мы ограничимся уровнем значимости a = 0,05, то, если эмпирическое значение критерия оказывается мень- ше или равно критическому, то можно сделать вывод, что «характеристики экспериментальной и контрольной групп совпадают на уровне значимости 0,05». Если эмпирическое значение критерия оказывается строго больше критического, то можно сделать вывод, что «достоверность различий харак- Об измерениях и анализе эмпирических данных 235 теристик экспериментальной и контрольной групп равна 95%». Приведем алгоритм выбора статистического критерия (см. Табл. 11). Во-первых, необходимо определить какая шкала измерений используется – отношений, порядковая или номинальная (см. выше). Табл. 11 Алгоритм выбора статистического критерия Шкала измерений Статистический критерий Отношений Крамера-Уэлча, Вилкоксона-Манна-Уитни Порядковая Вилкоксона-Манна-Уитни, c 2 Номинальная c 2 Дихотомическая Фишера Для шкалы отношений целесообразно использовать кри- терий Крамера-Уэлча. Если число различающихся между собой значений 36 в сравниваемых выборках велико (более десяти) 37 , то возможно использование критерия Вилкоксона- Манна-Уитни. Более подробные рекомендации по выбору критериев в том или ином конкретном случае, а также описа- ние этих критериев можно найти в [55, 65, 86]). Для порядковой шкалы целесообразно использовать кри- терий Вилкоксона-Манна-Уитни, возможно также использо- вание критерия c 2 Для номинальной шкалы следует использовать критерий c 2 Для дихотомической шкалы (номинальной шкалы с дву- мя возможными значениями) следует использовать критерий Фишера. 36 Например, выборка (1, 2, 2, 2, 1, 1, 2, 1, 1, 1) содержит всего два раз- личных значения – единицу и двойку. В то же время, например, выборка (2, 0, 1, 5, 8, 4, 2, 7, 3, 9) того же объема (десять элементов) содержит десять различных значений. 37 Понятно, что приводимые границы числа различающихся между собой значений (10) примерны, приблизительны. 236 Приложение 3 3. Исследование зависимостей. Следующим шагом по- сле изучения сходства/различий является установление факта наличия/отсутствия зависимости между показателями и ко- личественное описание этих зависимостей. Для этих целей используются, соответственно, корреляционный и дисперси- онный анализ, а также регрессионный анализ [55, 86]. Корреляционный анализ. Корреляция (Correlation) – связь между двумя или более переменными (в последнем случае корреляция называется множественной). Цель корреляцион- ного анализа – установление наличия или отсутствия этой связи, то есть установление факта зависимости каких-либо явлений, процессов друг от друга или их независимости. В случае, когда имеются две переменные, значения кото- рых измерены в шкале отношений 38 , используется коэффици- ент линейной корреляции Пирсона r, который принимает значения от -1 до +1 (нулевое его значение свидетельствует об отсутствии корреляции 39 ) – см. Рис. 16, на котором каждая точка соответствует отдельному объекту, описываемому двумя переменным – x и y. Термин «линейный» свидетельст- вует о том, что исследуется наличие линейной связи между переменными – если r(x, y)= 1, то одна переменная линейно зависит от другой (и, естественно, наоборот), то есть сущест- вуют константы a и b, причем a > 0, такие что y = a x + b. На Рис. 16а) и в) изображены ситуации, когда все экспе- риментальные точки лежат на прямой (абсолютное значение коэффициента линейной корреляции равно единице). В си- туации, изображенной на рисунке Рис. 16б), однозначно провести прямую через экспериментальные точки невозмож- но (коэффициент линейной корреляции равен нулю). 38 Единицы измерений при этом не важны – например, масса тела мо- жет быть измерена в граммах, килограммах, тоннах – они не влияют на значение коэффициента корреляции. 39 Корректно говоря, этот факт справедлив в случае, если анализируемая пара переменных описывается двумерным нормальным распределением (см. подробности, например, в [65]). Об измерениях и анализе эмпирических данных 237 x y r(x, y) = 1 а) x y r(x, y) = 0 б) x y r(x, y) = -1 в) x y r(x, y) = 1/2 г) x y r(x, y) = -1/2 д) Рис. 16. Величины коэффициента линейной корреляции в различных ситуациях Если экспериментальные точки сгруппированы около не- которой прямой – см. Рис. 16г) и д), то коэффициент линей- ной корреляции принимает значения, отличные от нуля, при- чем чем «ближе» точки к прямой, тем выше абсолютное значение коэффициента линейной корреляции. То есть, чем выше абсолютное значение коэффициента Пирсона, тем сильнее исследуемые переменные линейно связаны между собой. Для данных, измеренных в порядковой шкале, следует использовать коэффициент ранговой корреляции Спирмена (он может применяться и для данных, измеренных в интер- вальной шкале, так как является непараметрическим и улав- ливает тенденцию – изменения переменных в одном направ- лении), который обозначается s и определяется сравнением 238 Приложение 3 рангов – номеров значений сравниваемых переменных в их упорядочении. x y Рис. 17. Пример: коэф- фициент линейной корре- ляции (Пирсона) равен нулю для функционально (нелинейно и немонотон- но) связанных перемен- ных Коэффициент корреляции Спирмена является менее чувст- вительным, чем коэффициент корреляции Пирсона (так как первый в случае измерений в шкале отношений учитывает лишь упорядочение элементов выборки). В то же время, он позволяет выявлять корреляцию между монотонно нелинейно связанными переменными (для которых коэффициент Пирсона может показывать незначитель- ную корреляцию – см. Рис. 17). Отметим, что большое (близкое к плюс единице или к минус единице) значение коэффициента корреляции говорит о связи переменных, но ничего не говорит о причинно- следственных отношениях между ними. Так, например, из высокой корреляции температуры воздуха за окном и време- ни суток нельзя делать вывод о том, что движение солнца обусловлено изменениями температуры воздуха. Поэтому для установления причин связей между какими-либо явлениями, процессами необходимы дополнительные исследования по содержательной интерпретации этих связей. Дисперсионный анализ. Изучение наличия или отсутствия зависимости между переменными можно также проводить и с помощью дисперсионного анализа. Его суть заключается в следующем. Дисперсия характеризует «разброс» значений переменной. Переменные связаны, если для объектов, отли- чающихся значениями одной переменной, отличаются и значения другой переменной. Значит, нужно для всех объек- тов, имеющих одно и то же значение одной переменной (на- зываемой независимой переменной), посмотреть, насколько Об измерениях и анализе эмпирических данных 239 различаются (насколько велика дисперсия) значения другой (или других) переменной, называемой зависимой переменной. Дисперсионный анализ как раз и дает возможность сравнить отношение дисперсии зависимой переменной (межгрупповой дисперсии) с дисперсией внутри групп объектов, характери- зуемых одними и теми же значениями независимой перемен- ной (внутригрупповой дисперсией). Другими словами, дисперсионный анализ «работает» следующим образом. Выдвигается гипотеза о наличии зави- симости между переменными: например, между возрастом и уровнем образования сотрудников некоторой организации. Выделяются группы элементов выборки (сотрудников) с одинаковыми значениями независимой переменной – возрас- та, то есть сотрудников одного возраста (или принадлежащих выделенному возрастному диапазону). Если гипотеза о зави- симости уровня образования от возраста верна, то значения зависимой переменной (уровня образования) внутри каждой такой группы должны различаться не очень сильно (внутри- групповая дисперсия уровня образования должна быть мала). Напротив, значения зависимой переменной для различаю- щихся по возрасту групп сотрудников должны различаться сильно (межгрупповая дисперсия уровня образования должна быть велика). То есть, переменные зависимы, если отношение межгрупповой дисперсии к внутригрупповой велико. Если же гипотеза о наличии зависимости между переменными не верна, то это отношение должно быть мало. Регрессионный анализ. Если корреляционный и диспер- сионный анализ дают ответ на вопрос, существует ли взаимо- связь между переменными, то регрессионный анализ предна- значен для того, чтобы найти «явный вид» функциональной зависимости между переменными. Для этого предполагается, что зависимая переменная (иногда называемая откликом) определяется известной функцией (иногда говорят – моде- лью), зависящей от зависимой переменной или переменных (иногда называемых факторами) и некоторого параметра. Требуется найти такие значения этого параметра, чтобы по- 240 Приложение 3 лученная зависимость (модель) наилучшим образом описы- вала имеющиеся экспериментальные данные. Например, в простой 40 линейной регрессии предполагается, что зависимая переменная y является линейной функцией y = a x + b от независимой переменной x. Требуется найти значения пара- метров a и b, при которых прямая a x + b будет наилучшим образом описывать (аппроксимировать) экспериментальные точки (x 1 , y 1 ), (x 2 , y 2 ), …, (x n , y n ). Можно использовать полиномиальную регрессию, в кото- рой предполагается, что зависимая переменная является полиномом (многочленом) некоторой степени от независи- мой переменной (напомним, что линейная зависимость явля- ется полиномом первой степени). Например, полиномом второй степени (знакомая всем из школьного курса алгебры парабола) будет зависимость вида y = a x 2 + b x + c и задачей регрессии будет нахождение коэффициентов a, b и c. Выше мы рассмотрели простую регрессию (по одной не- зависимой переменной) – линейную и нелинейную. Возмож- но также использование множественной регрессии – опреде- ления зависимости одной переменной от нескольких факторов (независимых переменных). Регрессионный анализ, помимо того, что он позволяет количественно описывать зависимость между переменными, дает возможность прогнозировать значения зависимых пере- менных – подставляя в найденную формулу значения незави- симых переменных, можно получать прогноз значений зави- симых. При этом следует помнить, что построенная модель «локальна», то есть, получена для некоторых вполне кон- кретных значений переменных. Экстраполяция результатов модели на более широкие области значений переменных может привести к ошибочным выводам. |