палочки кюзенера. Карагодина палочки кюзенера начало дипломной. Актуальной. Теоретическую основу нашего исследования составляют труды Ф. Н. Блехер, Е. И. Тихеевой Н. А. Менчинской, К. Ф. Лебединцева, И. Френкеля, З. С. Пигулевской, А. М. Леушиной Объект исследования
Скачать 66.17 Kb.
|
1 Введение Формирование элементарных математических представлений – это целенаправленный и организованный процесс передачи и усвоения знаний, приемов и способов умственной деятельности в области математики. Дошкольный возраст – период интенсивного формирования количественных представлений. Особая роль при этом отводится нестандартным дидактическим средствам, к которым относится широко известный во всем мире дидактический материал, разработанный бельгийским математиком Х. Кюизенером. К сожалению, в ДОО очень редко используют методику Кюизенера. Исходя из вышесказанного, тему выпускной квалификационной работы «Возможности использования палочек Х. Кюизенера для формирования количественных представлений старших дошкольников» считаем актуальной. Теоретическую основу нашего исследования составляют труды Ф. Н. Блехер, Е. И. Тихеевой Н.А. Менчинской, К. Ф.Лебединцева, И. Френкеля, З. С. Пигулевской, А. М. Леушиной Объект исследования: процесс формирования количественных представлений у детей дошкольного возраста. Предмет исследования: использование палочек Х. Кюизенера для формирования количественных представлений старших дошкольников. Цель исследования: выяснить возможности использования цветных палочек Х. Кюизенера при формировании количественных представлений у детей дошкольного возраста. Исходя из объекта, предмета и для достижения поставленной цели намечены следующие задачи: а) изучить разработку вопроса формирования количественных представлений у дошкольников в трудах отечественных и зарубежных педагогов; б) сделать сравнительный анализ дошкольных образовательных программ с точки зрения задач по развитию количественных представлений; в) рассмотреть дидактические основы развития количественных представлений в старшем дошкольном возрасте; г) охарактеризовать дидактическое средство «Цветные палочки» Х. Кюизенера; д) рассмотреть опыт использования цветных палочек Х. Кюизенера в непосредственной образовательной деятельности для формирования количественных представлений старших дошкольников; е) разработать серию НОД по развитию количественных представлений с помощью цветных палочек Х. Кюизенера; ж) апробировать и описать опыт проведения НОД по развитию количественных представлений с помощью цветных палочек Х. Кюизенера. Методы исследования: анализ информационных источников, синтез полученных данных, обобщение, классификация, аналогия, изучение документации. Работа носит опытно-практический характер, что определило её структуру: введение, теоретическую и практическую части, заключение , список литературы, приложения. В ходе работы над темой использовались следующие источники: учебная и учебно-методическая литература, справочно-энциклопедическая литература, материалы периодической печати, ресурсы сети Интернет. Новизна и практическая значимость выпускной квалификационной работы заключается в том, что 2 Теоретические основы формирования количественных представлений у детей дошкольного возраста 2.1 Разработка вопроса формирования количественных представлений у дошкольников в трудах отечественных и зарубежных педагогов Вопрос математического развития детей дошкольного возраста своими корнями уходят в классическую и народную педагогику. Различные считалки, пословицы, поговорки, загадки, потешки были хорошим материалом в обучении детей счету, позволяли сформировать у детей понятия о числах, форме, величине, пространстве. В классических системах сенсорного обучения Ф. Фребеля и М. Монтессори представлена методика ознакомления детей с геометрическими фигурами, величинами, измерением и счетом. Созданные Ф. Фребелем «дары» и в настоящее время используются в качестве дидактического материала для ознакомления детей с числом, формой, величиной и пространственными отношениями. О значении обучения детей счету до школы неоднократно писал К.Д. Ушинский. Он считал важным научить ребенка считать отдельные предметы и их группы, выполнять действия сложения и вычитания, формировать понятие о десятке как единице счета. Однако все это было лишь пожеланиями, не имеющими никакого научного обоснования. С начала 20 века в России начала создаваться научно-обоснованная дидактическая система обучения дошкольников математике. В дореволюционной России методические пособия арестовывались, как правило, одновременно семье и детскому саду, в них родители и воспитатели знакомились с содержанием обучения математике детей. В 1912 голу выходит пособие В. А. Кемниц «Математика в детском саду»: игры, беседы, упражнения, изучение чисел от 1 до 10, действий с ними, форм, величин, измерения, части и целого. До 1939 года в детских садах детей обучали счету по методике Л. В. Глаголевой, в которой она рекомендовала опираться на обе господствующие в то время теории: восприятия числа путем счета и путем образа. Она пропагандировала разнообразие методов: а) лабораторный (отработка практических действий с использованием наглядных материалов); б) исследовательский (поиск детьми ситуаций применения знаний, аналогичных изучаемым); в) иллюстративный (закрепление умений в продуктивной деятельности); г) наглядный; д) игра. Одним из ярких представителей в области просвещения была Елизавета Ивановна Тихеева. Свои взгляды на развитие методики она отразила в книгах «Современный детский сад», «Счет в жизни маленьких детей», «Наш счетно-строительный материал». Она считала, что все развитие ребенка, в том числе и формирование математических представлений, должно осуществляться естественно, без принуждения и давления. Отсюда вытекают и ее требования к организации работы с детьми: а) создавать специальную обстановку таким образом, чтобы все способности ребенка развивались интенсивно и беспрепятственно, все их запросы находили удовлетворение; б) взрослый должен стать незаметными пособниками и руководителем в этой среде, а ребенок должен всему научиться сам (переоценить значение дидактических игр, автодидактизм); в) исключить из занятий формальное, систематическое обучение, и организацию коллективных занятий, т.к. в них «навязывается» всем то, к чему не лежит душа некоторых детей (индивидуальное обучение); г) не применять к маленьким детям школьные методы; д) не позволять ребенку расти «подобно сорной траве»; е) не допускать полной стихийность воспитания, так как в школу большинство детей приходят неподготовленными; ж) «работу в детских садах не должно стеснять никакими рамками, …она должна вытекать из особенностей индивидуальности детей» (отрицание программы). Все знания ребенок должен получать в игре и через игру с природным материалом, с предметами быта, со специальным дидактическим материалом, при этом важную роль играет слово воспитателя как залог успешности обучения. Дидактический и природный материал должен быть интересен, знаком, разнообразен, всегда под рукой, но нельзя ребенка насильно заставлять им пользоваться. Тихеева сама создала более шестидесяти игр-занятий с дидактическим материалом и рекомендовала организовывать с детьми 4 - 5 лет коллективные занятия с обязательным участием воспитателя. Большая роль в разработке методики принадлежит Фаине Наумовне Блехер. Она разработала пособие по счету для детских садов «Математика в детском саду и нулевой группе». Это было первое учебное пособие и первая официальная программа по математике. В дополнение к этому пособию она создает методические письма как руководящие документы для детских садов. На основании изучения взглядов зарубежных педагогов Декедра, Бекмана Фильбига она утверждала, что дети в разном возрасте воспринимают разные числа: группу из двух предметов в 3 – 4 года, из трех предметов в 4 – 4,5 года, из четырех предметов – в 5 – 5,5 лет. Исходя из этого, Фаина Наумовна разработала программу обучения счету в детском саду. а) в младшей группе формировать представления о количестве в пределах 5 на конкретных предметах, учить называть числительные от 1 до 4, знать некоторые формы, утро, вечер; б) в средней группе учить определять количество в пределах 10, определять числа на слух, усвоить понятие «пара», знать цифры 1 – 5, уметь пользоваться в повседневной жизни порядковыми числительными, вчера, сегодня. в) в старшей группе знать состав чисел, обратный счет, цифры, сложение и вычитание на основе присчитывания и отсчитывания, освоить второй десяток, задачи в одно действие, находить геометрические фигуры в окружающей обстановке, неделя, время по часам. Ф. Н. Блехер считала необходимым создавать специальные условия в детском саду для успешного математического развития. Она разработала большое количество игр, упражнений, специальную книгу по математике и тетрадь на каждого ребенка. Для формирования количественных представлений Ф. Н. Блехер предлагала использовать следующие пути: а) на основе целостного восприятия групп предметов в младшей группе: дети должны научиться «схватывать» группу предметов целиком или частями целого с использованием числовых фигур и предметов. б) на основе счета в результате последовательного присоединения предметов по 1 и создания групп, действия выполняет сам ребенок; счет вводится со средней группы, при этом предметы располагаются линейно для усвоения порядка чисел и познания отношений между ними; считала счет средством не только умственного, но и всестороннего развития. А. М. Леушина работала в тесном сотрудничестве с С. Л. Рубинштейном, и основные вопросы ее научных трудов связаны с психолого-педагогическими исследованиями умственного развития детей, в частности, развитие речи и количественных представлений. Благодаря ей методика получила научное психолого-педагогическое обоснование. Методическая концепция автора сложилась в результате многолетней экспериментальной и научно-теоретической работы. Она заключается в следующем: от нерасчлененного восприятия множеств предметов детей необходимо переводить к выявлению отдельных составляющих - это множество элементов путем попарного сопоставления их, что представляет дочисловой период обучения (усвоение отношений «столько же», «поровну», «больше», «меньше» и др.). Обучение счету следует за освоением детьми действий с множествами и базируется на сравнении двух предметных групп. Дети знакомятся с числом как характеристикой численности конкретной предметной группы в сопоставлении ее с другой. В ходе сравнения чисел (на наглядной основе) ребенком усваиваются последовательность и отношения между ними, что приводит к сознательному освоению счета и использованию его в вычислениях, выполнению действий при решении простых арифметических задач. Элементарное представление о числе формируется у детей в ходе накопления ими опыта сравнения нескольких предметных групп по признаку количества независимо от других признаков (качественные особенности, расположение в пространстве). На этой основе строилось освоение количественного и порядкового счета, определение состава чисел из единиц и двух меньших чисел. В методике первоначального ознакомления детей с числами, счетом, арифметическими действиями, разработанной А. М. Леушиной, использованы положительные стороны метода изучения чисел (воспроизведение групп предметов, применение числовых фигур и счетных карточек, изучение состава чисел) и метода изучения действий (число как результат счета, образование чисел на основе сравнения двух совокупностей и практического установления между ними взаимно однозначного соответствия, увеличение или уменьшение одного из них на, освоение действий сложения и вычитания, сформированных представлений о числах натурального ряда и навыков счетной деятельности). По утверждению А. М. Леушиной, в работе по развитию количественных представлений у детей следует особое внимание уделять накоплению чувственного опыта, созданию сенсорной основы счетной деятельности, последовательному обобщению детских представлений. Этим требованиям отвечает предложенная ею система практических упражнений с демонстрационным и раздаточным материалом. Результаты научных исследований А. М. Леушиной отражены в ее многочисленных публикациях, учебных пособиях, таких как «Обучение счету в детском саду» [ ], «Формирование элементарных математических представлений у детей дошкольного возраста» [ ] и др. Воспитатели детских садов широко использовали разработанные А. М. Леушиной конспекты занятий «Занятия по счету в детском саду» [ ] и наглядные дидактические материалы [ ] Разработанная А. М. Леушиной концепция формирования элементарных математических представлений у детей служит источником для многих современных исследований, а дидактическая система прошла испытания временем, успешно функционирует уже несколько десятков лет, показала свою эффективность в условиях общественного дошкольного воспитания, реализована в «Программе обучения и воспитания в детском саду». Исследования современных психологов П. Я. Гальперина, П. М. Эрдниева показали что число должно восприниматься детьми, прежде всего как результат измерения, как отношение измеряемой величины к избранной мере. В результате такого обучения дети раньше, чем по традиционной системе обучения, знакомятся с числом не только как характеристикой количества отдельных предметов, но и как показателем отношений. В 60 – 70 – е года исследования, проведенные Т. А. Мусейбовой, Т. В. Тарунтаевой, В. В. Даниловой, Н. И. Непомнящей и другими по многим другим проблемам математического развития дошкольников, позволили определить объем и содержание обучения математике в детском саду. В программу по математике были введены вопросы ознакомления детей с величиной и формой предметов, пространственными и числовыми отношениями, со способами измерения непрерывных величин (линейное и объемное измерение), с отношением частей и целого и др. [12] В современных исследованиях психологов и педагогов (В. В. Давыдов, В. В. Данилова, А. Я Савченко, Л. А. Таратоянова, Н. И. Непомнящая, Г. А. Корнеева и др.) все больше подчеркивалась необходимость обучать детей обобщенными приемами и способами деятельности. [21, с. 111] Таким образом, изучив разработку вопроса формирования количественных представлений у дошкольников в трудах отечественных и зарубежных педагогов, мы пришли к выводу, что существовали разные взгляды на то, как ребенок воспринимает число и как он овладевает счетом на начальных этапах своего развития. Для формирования количественных представлений дошкольников необходимо учитывать индивидуальные особенности при составлении задания, использовать индивидуальный подход к каждому ребенку. Самое главное это разнообразие использования форм и методов развития количественных представлений. 2.2 Сравнительный анализ дошкольных образовательных программ с точки зрения задач по развитию количественных представлений. Программа воспитания и обучения в детском саду «От рождения до школы», под редакцией Н. Е. Вераксы, Т. С. Комаровой, М. А. Васильевой. Авторы отмечают, что это усовершенствованный вариант, составленный с учетом федеральных государственных стандартов к структуре общеобразовательной программы, новейших достижений современной науки и практики отечественного дошкольного образования. По словам авторов, она предусматривает развитие у детей в процессе различных видов деятельности внимания, восприятия, памяти, мышления, воображения, речи, а также способов умственной деятельности (умение элементарно сравнивать, анализировать, обобщать, устанавливать простейшие причинно-следственные связи и др.). Фундаментом умственного развития ребенка являются сенсорное воспитание, ориентировка в окружающем мире, большое значение в умственном воспитании детей имеет развитие элементарных математических представлений. Цель программы по элементарной математике - формирование приемов умственной деятельности, творческого и вариативного мышления на основе привлечения внимания детей к количественным отношениям предметов и явлений окружающего мира. Программа предполагает формирование математических представлений у детей, начиная с первой младшей группы (от 2 до 3 лет). Однако на первом и втором году жизни «Программа воспитания и обучения в детском саду» предусматривает создание развивающей среды, позволяющей создавать базовые математические представления. Разработчики программы указывают на важность использования материала программы для развития умения четко и последовательно излагать свои мысли, общаться друг с другом, включаться в разнообразную игровую и предметно-практическую деятельность, для решения различных математических проблем. Необходимое условие успешной реализации программы по элементарной математике - организация особой предметно-развивающей среды в группах и на участке детского сада для прямого действия детей со специально подобранными группами предметов и материалами в процессе усвоения математического содержания. В программе не выделяется раздел «Множество» как самостоятельный, а задачи по данной теме включаются в раздел «Количество и счет». Указанные задачи находятся в конце раздела, после задач по формированию числовых и количественных представлений, что, на наш взгляд, не позволяет подчеркнуть значимость данных понятий для развития у детей представлений об операциях с числами (сложения, вычитания, деления), основой которых они и являются. С одной стороны, в программе четко не оговаривается решение задач по знакомству детей с арифметическими операциями, но с другой - предполагается обучение решению арифметических задач, что требует работы над арифметическим действием. В целом программа представляет достаточно богатый материал по формированию математических представлений у дошкольников. В программу вошло большое количество задач, не предусмотренных в более ранних вариантах программы. Это: задачи по формированию представлений об операциях с множествами (объединение, выделение из целого части и т.п.); задачи на формирование представлений о делении целого предмета на равные части, знакомство с объемом, с измерением жидких и сыпучих веществ; задачи по развитию у детей чувства времени, обучение определять время по часам и т.п. В рамках формирования геометрических представлений планируется работа не только с плоскостными, но и с объемными геометрическими фигурами, расширен круг геометрических фигур, предлагаемых для изучения детьми. Программа развития и воспитания в детском саду «Детство», под редакцией: Т. И. Бабаевой, З. А. Михайловой, Л. М. Гурович. Программа создавалась в целях обогащенного развития детей дошкольного возраста, обеспечения единого процесса социализации — индивидуализации личности через осознание ребенком своих Потребностей, возможностей и способностей. Ее девиз: «Чувствовать - познавать - творить». Эти слова, отмечают авторы, определяют три взаимосвязанные линии развития ребенка, которые пронизывают все разделы программы, придавая ей целостность и единую направленность. В большинстве своем занятия проводятся по подгруппам и имеют интегративный характер. Математический блок программы «Детство» разработан известными учеными в области теории и методики формирования элементарных математических представлений у дошкольников З. А. Михайловой и Т. Д. Рихтерман. Программный материал представлен по каждой отдельной возрастной группе и имеет своеобразное название «Первые шаги в математику». Вместо традиционных тематических разделов в математическом блоке выделены такие разделы: «Свойства», и отношения», «Числа и цифры», «Сохранение (неизменность) количества и величин», «Алгоритмы». По каждому из разделов сформулированы «представления», «познавательные и речевые умения». Кроме того, по каждой возрастной группе определены основные задачи развития математических знаний и уровни освоения программы. Особое внимание при организации процесса формирования математических представлений у детей третьего и четвертого года жизни уделяется созданию развивающей среды. В данном контексте программы отмечено, что окружающие предметы, игрушки должны отличаться по размеру, форме. В процессе игровых действий с предметами, геометрическими телами и фигурами, песком и водой дети познают их свойства, определяют идентичность и различия предметов по свойствам. Взрослый создает условия и обстановку, благоприятные для вовлечения ребенка в деятельность сравнения, сосчитывания, воссоздания, группировки, перегруппировки и т.д. При этом инициатив в развертывании игры, действия принадлежит ребенку. Воспитатель вычленяет, анализирует ситуацию, направляет процесс ее развития, способствует получению результата. Авторы считают необходимым использовать игры, развивающие мысль ребенка и приобщающие его к умственному труду. В программе, в частности, предлагаются игры: из серии «Логические кубики - «Уголки», «Составь куб» и др.; из серии «Кубики и цвет» - «Сложи узор», «Куб-хамелеон» и др. Из дидактических пособий рекомендуются логические блок Дьенеша, цветные счетные палочки (палочки Кюизенера), модели. Программа предусматривает углубление представлений детей о свойствах и отношениях объектов, в основном через игры на классификацию и сериацию, практическую деятельность, направленную на воссоздание, преобразование форм предметов и геометрических фигур. Дети не только пользуются известными им знаками и сим волами, но и находят способы условного обозначения новых, неизвестных им ранее параметров величин, геометрических фигур, временных и пространственных отношений и т.д. В содержании обучения преобладают логические задачи, ведущие к познанию закономерностей, простых алгоритмов. В ходе освоения чисел педагог способствует осмыслению детьми последовательности чисел и места каждого из них в натуральном ряду. Это выражено в умении детей образовать число больше или меньше заданного, доказывать равенство или неравенство группы предметов по числу, находить пропущенное число. По программе «Детство» в рамках формирования математических представлений издано пособие «Математика до школы», состоящее из двух частей. Первая часть представлена авторами А. А. Смоленцевой и О. В. Пустовойтовой, которыми разработаны методические рекомендации и предлагаются игры с дидактическими средствами: «Палочки Кюизенера», «Игры с блоками», представлены варианты работы с моделями и схемами. Вторая часть пособия представлена З. А. Михайловой и Р. Л. Непомнящей. В этой части описаны игры-головоломки, которые рекомендуются для работы с детьми. В работе мы провели сравнительный анализ образовательных программ с точки зрения задач по развитию количественных представлений, они представлены в таблице (см. Таблица 1) Таблица 1 – Задачи по развитию количественных представлений в дошкольных образовательных программах
Таким образом, мы сделали сравнительный анализ программ и выяснили, что в программе «От рождения до школы» задачи по формированию количественных представлений четко распределены на каждую возрастную группу, в программе даются некоторые примеры постановок вопросов. Идет постепенное усложнение материала, не перегружая детей – дошкольников. Программа «Детство» достаточно содержательна в плане формирования количественных представлений. Программа предполагает усвоение не отдельных представлений, а математических отношений, связей, зависимостей, закономерностей, что благоприятно способствует дальнейшему усвоению данной дисциплины в школе. Целью данной программы является не только развитие познавательных способностей, но и творческих. Имеет классическое математическое содержание: доматематические (сравненение, уравнение, комплектование) и математические виды деятельности (счет, измерение, вычисление). |