впып. Архитектуры ИС (1). Архитектура информационной системы
Скачать 0.5 Mb.
|
2 Архитектура информационной системы - концепция, определяющая модель, структуру, выполняемые функции и взаимосвязь компонентов информационной системы. (Глоссарий) С точки зрения программно-аппаратной реализации можно выделить ряд типовых архитектур ИС. Компоненты информационной системы по выполняемым функциям можно разделить на три слоя: слой представления, слой бизнес-логики и слой доступа к данным. Слой представления- все, что связано с взаимодействием с пользователем: нажатие кнопок, движение мыши, отрисовка изображения, вывод результатов поиска и т.д. Бизнес логика- правила, алгоритмы реакции приложения на действия пользователя или на внутренние события, правила обработки данных. Слой доступа к данным- хранение, выборка, модификация и удаление данных, связанных с решаемой приложением прикладной задачей Традиционные архитектуры информационных систем. Файл-серверная архитектура Появились локальные сети. Файлы начали передаваться по сети. Сначала были одноранговые сети - все компьютеры равноправны. 3 Потом возникла идея хранения всех общедоступных файлов на выделенном компьютере в сети - файл-сервере. Файл-серверные приложения — приложения, схожие по своей структуре с локальными приложениями и использующие сетевой ресурс для хранения программы и данных. Функции сервера: хранения данных и кода программы. Функции клиента: обработка данных происходит исключительно на стороне клиента. Количество клиентов ограничено десятками. Плюсы: 4 1. Многопользовательский режим работы с данными; 2. Удобство централизованного управления доступом; 3. Низкая стоимость разработки; Минусы: 1. Низкая производительность; 2. Низкая надежность; 3. Слабые возможности расширения; Недостатки архитектуры с файловым сервером очевидны и вытекают главным образом из того, что данные хранятся в одном месте, а обрабатываются в другом. Это означает, что их нужно передавать по сети, что приводит к очень высоким нагрузкам на сеть и, вследствие этого, резкому снижению производительности приложения при увеличении числа одновременно работающих клиентов. Вторым важным недостатком такой архитектуры является децентрализованное решение проблем целостности и согласованности данных и одновременного доступа к данным. Такое решение снижает надежность приложения. Клиент-серверная архитектура Ключевым отличием архитектуры клиент-сервер от архитектуры файл-сервер является абстрагирование от внутреннего представления данных (физической схемы данных). Теперь клиентские программы манипулируют данными на уровне логической схемы. Итак, использование архитектуры клиент-сервер позволило создавать надежные (в смысле целостности данных) многопользовательские ИС с централизованной базой данных, независимые от аппаратной (а часто и программной) части сервера БД и поддерживающие графический интерфейс пользователя (ГИП) на клиентских станциях, связанных локальной сетью. Причем издержки на разработку приложений существенно сокращались. Основные особенности: 5 Клиентская программа работает с данными через запросы к серверному ПО. Базовые функции приложения разделены между клиентом и сервером. Плюсы: Полная поддержка многопользовательской работы Гарантия целостности данных Минусы: Бизнес логика приложений осталась в клиентском ПО. При любом изменении алгоритмов, надо обновлять пользовательское ПО на каждом клиенте. Высокие требования к пропускной способности коммуникационных каналов с сервером, что препятствует использование клиентских станций иначе как в локальной сети. Слабая защита данных от взлома, в особенности от недобросовестных пользователей системы. Высокая сложность администрирования и настройки рабочих мест пользователей системы. Необходимость использовать мощные ПК на клиентских местах. Высокая сложность разработки системы из-за необходимости выполнять бизнес- логику и обеспечивать пользовательский интерфейс в одной программе. 6 Нетрудно заметить, что большинство недостатков классической или 2-х слойной архитектуры клиент-сервер проистекают от использования клиентской станции в качестве исполнителя бизнес-логики ИС. Поэтому очевидным шагом дальнейшей эволюции архитектур ИС явилась идея "тонкого клиента", то есть разбиения алгоритмов обработки данных на части связанные с выполнением бизнес-функций и связанные с отображением информации в удобном для человека представлении. При этом на клиентской машине оставляют лишь вторую часть, связанную с первичной проверкой и отображением информации, перенося всю реальную функциональность системы на серверную часть. Переходная к трехслойной архитектуре (2.5 слоя) Использование хранимых процедур и вычисление данных на стороне сервера сокращают трафик, увеличивают безопасность. Клиент все равно реализует часть бизнес- логики. Как видно, такая организация системы весьма напоминает организацию первых унитарных систем с той лишь разницей, что на пользовательском месте стоит не терминал (с пресловутым зеленым экраном), а персональный компьютер, обеспечивающий ГИП, например, в последнее время в качестве клиентских программ часто применяют стандартные www-броузеры. Конечно, такой возврат к почти унитарным системам произошел уже на ином технологическом уровне. Обязательным стало использование СУБД со всеми их преимуществами. Программы для серверной части пишут, в основном, на специализированных языках, пользуясь механизмом хранимых процедур сервера БД. Таким образом, на уровне логической организации, ИС в архитектуре клиент-сервер с тонким клиентом расщепляется на три слоя - слой данных, слой бизнес-функций (хранимые процедуры) и слой представления. К сожалению, обычно, в такой схеме построения ИС не удается написать всю бизнес-логику приложения на не предназначенных для этого встроенных языках СУБД. Поэтому, очень часто часть бизнес- функций реализуется в клиентской части систем, которая от этого неотвратимо "толстеет". Отчасти поэтому, отчасти потому, что физически такие ИС состоят из двух компонентов, эту архитектуру часто называют 2.5-слойный клиент-сервер. В отличие от 2-х слойной архитектуры 2.5-слойная архитектура обычно не требует наличия высокоскоростных каналов связи между клиентской и серверной частями системы, так как по сети передаются уже готовые результаты вычислений - почти все вычисления производятся на серверной стороне. Существенно улучшается также и защита информации - пользователям даются права на доступ к функциям системы, а не на доступ к ее данным и т.д. Однако вместе с преимуществами унитарного подхода архитектура 2.5 перенимает и все его недостатки, как-то: ограниченную масштабируемость, зависимость от программной платформы, ограниченное использование сетевых вычислительных ресурсов. Кроме того программы для серверной части системы пишутся на встроенных в СУБД языках описания хранимых процедур, предназначенных для валидации данных и построения несложных отчетов, а вовсе не для написания ИС масштаба предприятия. Все это снижает быстродействие системы, повышает трудоемкость создания с модификации ИС и самым негативным образом сказывается на стоимости аппаратных средств, необходимых для ее функционирования. Трехуровневая клиент-серверная архитектура Для решения этих проблем и была предложена так называемая 3-х слойная архитектура клиент-сервер. Основным ее отличием от архитектуры 2.5 является физическое разделение программ, отвечающих за хранение данных (СУБД) от программ эти данные 7 обрабатывающих (сервер приложения (СП), application server (AS)). Такое разделение программных компонент позволяет оптимизировать нагрузки как на сетевое, так и на вычислительное оборудование комплекса. Компоненты трѐхзвенной архитектуры, с точки зрения программного обеспечения реализуют определенные сервера БД, web-сервера и браузеры. Место любого из этих компонентов может занять программное обеспечение любого производителя. Ниже представлено описание взаимодействия компонентов трехуровневой архитектуры клиент- серверного приложения. Сервер БД представлен MySQL-сервером; сервер приложений 8 технологиями: ADO.NET, ASP.NET и web-сервером IIS; роль клиента выполняет любой web-браузер. Браузер клиента 1-> Сервер IIS 2-> Исполняющая среда ASP.NET 2.0 3-> Провайдер данных ADO.NET 2.0 4-> Сервер MySQL 5-> Провайдер данных ADO.NET 2.0 6- > Исполняющая среда ASP.NET 2.0 7-> Сервер IIS 8-> Браузер клиента 1 — браузер клиента отправляет HTTP-запрос; 2 — на стороне сервера служба Web Internet Information Server (web-сервер IIS) определяет тип запрашиваемого ресурса, и для случая запроса *.aspx (расширение файлов страниц ASP.NET) загружает соответствующее ему (запросу) расширение Internet Server Aplication Programming Interface (ISAPI). Для страниц aspx это расширение isapi_aspnet.dll. IIS также осуществляет идентификацию и авторизацию пользователя от которого поступил запрос. В свою очередь расширение isapi_aspnet.dll загружает фабрику обработчиков ASP.NET. Далее, фабрика обработчиков создает объектную модель запрашиваемой страницы и обрабатывает действия пользователя. 3 — в ходе генерации ответа приложению ASP.NET может потребоваться обращение к БД, в этом случае используя библиотеки классов провайдера данных ADO.NET 2.0, выполняющая среда обращается к серверу БД; 4 — провайдер данных ADO.NET 2.0 передает запрос на операцию с БД серверу MySQL; 5 — сервер MySQL осуществляет обработку запроса, выполняя соответствующие операции с БД ; 6 — провайдер данных ADO.NET 2.0 передает результаты запроса объекту страницы; 7 — объект страницы с учетом полученных данных осуществляет рендеринг графического интерфейса страницы и направляет результаты в выходной поток; 8 — сервер IIS отправляет содержимое сгенерированной страницы клиентскому браузеру. Плюсы: 1. Тонкий клиент. 2. Между клиентской программой и сервером приложения передается лишь минимально необходимый поток данных - аргументы вызываемых функций и возвращаемые от них значения. Это теоретический предел эффективности использования линий связи, даже работа с ANSI-терминалами (не говоря уже об использование протокола http) требует большей нагрузки на сеть. 3. Сервер приложения ИС может быть запущен в одном или нескольких экземплярах на одном или нескольких компьютерах, что позволяет использовать вычислительные мощности организации столь эффективно и безопасно как этого пожелает администратор ИС. 4. Дешевый трафик между сервером приложений и СУБД. Трафик между сервером приложений и СУБД может быть большим, однако это всегда трафик локальной сети, а их пропускная способность достаточно велика и дешева. В крайнем случае, всегда можно запустить СП и СУБД на одной машине, что автоматически сведет сетевой трафик к нулю. 5. Снижение нагрузки на сервер данных по сравнению с 2.5-слойной схемой, а значит и повышение скорости работы системы в целом. 6. Дешевле наращивать функциональность и обновлять ПО. Минусы: 9 1. Выше расходы на администрирование и обслуживание серверной части. Масштабируемость систем выполненных в 3-х слойной архитектуре впечатляет. Одна и та же система может работать как на одном отдельно стоящем компьютере, выполняя на нем программы СУБД, СП и клиентской части, так и в сети, состоящей из сотен и тысяч машин. Как уже было отмечено, единственным фактором, препятствующим бесконечной масштабируемости, является лишь требование ведения единой базы данных. Помимо требования увеличения производительности системы с ростом масштабов деятельности важным фактором является и расширение ее функциональной наполненности. И здесь 3-х слойная схема выигрывает у своих предшественников. Для расширения функциональности не обязательно менять всю систему как в случае 2.5- слойной схемы - достаточно установить новый сервер приложения с требуемой функцией. Отпадают и многие проблемы связанные с переустановкой клиентских частей программы на множестве компьютеров, быть может весьма удаленных, столь актуальные для 2- слойной схемы - парадигма "тонкого" клиента предоставляет для этого целый ряд возможностей. |